• Title/Summary/Keyword: Pollution load index

Search Result 40, Processing Time 0.028 seconds

Distribution and Pollution of Heavy metals in Surface sediments from Nakdong River (낙동강 수계 표층 퇴적물의 중금속 분포와 오염도)

  • Kim, Shin;Kim, Jueon;Lee, Kwonchul;Lee, Kyuyeol;Jeon, Hyelyn;Yu, Jaejung;Lee, Injung;Ahn, Jungmin
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.969-980
    • /
    • 2015
  • In order to certificate the distribution and pollution of heavy metal of surface sediments in Nakdong River were collected and analyzed for grain size, water content, ignition loss and heavy metal content. Surface sediments mainly composed of sand(avg. 94.6%) and water content and ignition loss were 20.46%, 1.53% on average. Grain size were relatively fine and organic matter content were relatively high in the Hoichun and Sunakdonggang. Most of heavy metal content(Zn > Cr > Pb > Ni > Cu > Hg) in the Deokcheongang and Sunakdonggang were higher than the other streams. The Igeo were non polluted(less than 0) in all streams and the EF were relatively high in the small stream and PLI were non polluted(less than 1). In addition, organic matter, heavy metal content and pollution were highly correlation with grain size. Surface sediments in study area, heavy metal pollution of the Sunakdonggang were relatively high compared to the other stream but these results were not serious pollution that exceed the sediment pollution evaluation standard of river and lake in Korea and pollution levels adversely affected the majority of benthos were not.

Trace Metal Distribution and Ecological Risk Assessment in Marine Sediments from the Southeast Coastal Areas of Korea (남동해 연안 퇴적물 내 미량금속 분포 및 생태위해도 평가)

  • Dong-Woon Hwang;Minkyu Choi;Jae-Hyun Lim;In-Seok Lee;Garam Lee;Sujin Na
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.438-448
    • /
    • 2023
  • The concentrations of trace metals and organic matters in marine sediments collected from southeast Korean coastal areas were investigated. The primary purpose of this study was to evaluate the contamination status, spatial distribution and potential ecological risks associated with the physiochemical composition in the studied areas. We found that the concentrations of trace metals in marine sediments were as follows: Fe > Mn > Zn > Cr > Pb > Cu > As > Cd > Hg. According to the sediment quality guidelines (SQGs) of Korea, concentrations of Zn, Cr, Cu and Cd at all sampling sites were below threshold effect levels (TEL). However, concentrations of As, Hg, and Pb (i.e., at the 94-98% of sampling sites), were below the TEL. In addition, concentration factors (CF) in the surveyed area were found to be associated with low ecological risks, whereas As, Hg, and Cu showed moderate to high risk levels in some inner parts of the studied bays. Finally, the pollution load index (PLI) and ecological risk index (ERI) of the elucidated metals were linked to moderate ecological risk, pointing to the possibility of being deleterious to some benthic organisms.

Evaluation of Pollution Level for Organic Matter and Trace Metals in Sediments around Taehwa River Estuary, Ulsan (울산 태화강 하구역 퇴적물의 유기물 및 미량금속 오염도 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Chung-Sook;Kim, Hyung-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.542-554
    • /
    • 2015
  • Grain size, the content of ignition loss (IL), and the concentrations of chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Mn, Cu, Pb, Zn, Cd, Cr, As, and Hg) in surface sediments from the Taehwa River estuary, Ulsan, were measured to evaluate pollution levels and potential ecological risks of organic matter and trace metals in estuarine sediment. The mean grain size (Mz) of sediments in the study region ranged from $-0.8-7.7{\varphi}$ (mean $2.8{\pm}2.4{\varphi}$). Surface sediments in the upstream region of the Taehwa River were mainly composed of coarse sediments compared to the downstream region. The concentrations of IL, COD, AVS and trace metals in the sediment were much higher at downstream sites of Myeongchon Bridge in the vicinity of industrial complexes than at upstream sites of those in the vicinity of the residential areas due to the anthropogenic input of organic matter and trace metals by industrial activities. On the basis of several geochemical assessment techniques [sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollution load index (PLI) and ecological risk index (ERI)], the surfaces sediments in the study region are not highly polluted for trace metals, except for As. However, the higher concentrations in downstream study regions of the Taehwa River could impact benthic organisms including shellfish (i.e. Manila clam) in sediments.

Numerical Prediction for Reduction of Oxygen Deficient Water Mass by Ecological Model in Jinhae Bay (생태계모텔에 의한 진해만의 빈산소수괴 저감예측)

  • Lee, In-Cheol;Kong, Hwa-Hun;Yoon, Seok-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.75-82
    • /
    • 2008
  • As a basic study for establishing a countermeasure for an oxygen deficient water mass (ODW), we investigated the variation of ODW volume according to the enforced total pollution load management in Jinhae Bay. This study estimated the inflowing pollutant loads into Jinhae Bay and predicted the reduction in ODW by using a sediment-water ecological model (SWEM). The result obtained in this study are summarized as follows: 1) The daily average pollutant loads of COD, SS, TN, TP, DIN, and DIP inflowing into Jinhae bay in 2005 were estimated to be about 12,218 kg-COD/day, 91,884 kg-SS/day, 5,292 kg-TN/day, 182 kg-TP/day, 4,236 kg-DIN/day, and 130 kg-DIP/day. 2) The calculated results of the tidal current by the hydrodynamic model showed good agreement with the observed currents. Also, an ecological model well reproduced the spatial distribution of the water quality in the bay. 3) This study defined the ODWDI (ODW decreasing index) in order to estimate the ODW decreasing volume caused by a reduction in the inflowing pollutant loads. As a result, the ODWDI was predicted to be about 0.91 (COD 30% reduction), 0.87 (COD 50% reduction), 0.79 (COD 70% reduction), 0.85 (ALL 30% reduction), 0.66 (ALL 50% reduction), and 0.45 (ALL 70% reduction). The ODW volume was decreased 1.5 $\sim$ 2.6 times with a reduction in the COD, TN, and TP inflowing pollutant loads compared to a reduction in just the COD inflowing pollutant load. Therefore, it is necessary to enforce total pollution load management, not only for COD, but also fm TN and TP.

A study about the management of environmental data and the simulation of BOD using GSIS (GSIS를 이용(利用)한 환경데이터의 관리(營理)와 BOD 농도(濃度) 변화 simulation에 관(關)한 연구(硏究))

  • Sung, Dong-Gwon;Kim, Tae-Gun;Ko, Je-Uing;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.75-90
    • /
    • 1998
  • In this study, as a method for management of waterquality in stream, we build a database on a environmental information such as a pollution source, a waterquality. And especially, we simulate the BOD concentration which is a index indicate the status of organic pollution in stream. Also This study purposes not only building a database on all sorts of envirnomental data, but also searching, statistic and analysis of the database. The result of this study enables us to see and understand contamination state in stream esaily, so it can help to enhance the attention. Also, we can quickly know study area and the degree of effects when water contamination occurs abruptly. And also, we can compare and know pollution source state and the pollutant load among districts. It is expected to use it as an auxiliary basis when we make a policy about pollutant load reduction, because we can know the extent of the pollution in strean by each a pollution source.

  • PDF

Evaluation of the Concentration Distribution and the Contamination Influences for Beryllium, Cobalt, Thallium and Vanadium in Soil Around the Contaminated Sources (오염원 인근 토양 중 베릴륨(Be), 코발트(Co), 탈륨(Tl), 바나듐(V)의 농도분포 및 오염영향 평가)

  • Lee, Hong-gil;Noh, Hoe-Jung;Yoon, Jeong Ki;Lim, Jong-hwan;Lim, Ga-Hee;Kim, HyunKoo;Kim, Ji-in
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.48-59
    • /
    • 2018
  • Beryllium (Be), cobalt (Co), thallium (Tl) and vanadium (V) are candidates of 21 priority soil pollutants in Korea. The distribution of their concentration in soils from three contamination sources including industrial, roadside and mining areas was investigated. Concentrations of the metals were evaluated quantitatively using pollution indices and the fractionation of metals was conducted using modified SM&T (Standards Measurements and Testing programme) sequential extraction. Concentrations of the metals for all samples from industrial and roadside soils were within the range of natural background levels, while some of Be in soils from abandoned mines exceeded that the range. Enrichment Factor (EF) and Nemerow Integrated Pollution Index (NIPI) for Be, Co, Tl and V showed that there are effects or possibilities of anthropogenic activities. Pollution Load Index (PLI) analyses indicated all investigated sites needed further monitoring. The results of sequential extractions indicated mobile fractions (F1+F2) of Be, Tl and V were below 30% except some of Co in soil, which implies their low mobility to neighboring environment media. Variable tools like sequential extraction, comparison with background/actual concentration and pollution indices, as well as aqua regia extraction should be considered when evaluating Be, Co, Tl, V in soil.

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine (폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사)

  • Han-Gyum Kim;Bum-Jun Kim;Myoung-Soo Ko
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.717-726
    • /
    • 2022
  • This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

The impact of municipal waste disposal of heavy metals on environmental pollution: A case study for Tonekabon, Iran

  • Azizpour, Aziz;Azarafza, Mohammad;Akgun, Haluk
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.175-189
    • /
    • 2020
  • Municipal solid waste disposal is considered as one of the most important risks for environmental contamination which necessitates the development of strategies to reduce destructive consequences on the ecosystem as related especially to heavy metal accumulation. This study investigates heavy metal (i.e., As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) accumulation in the Tonekabon region, NW of Iran that is related to city waste disposal and evaluates the environmental impact in the Caspian Sea coastal region. For this purpose, after performing field studies and collecting 50 soil specimens from 5 sites of the study area, geochemical tests (i.e., inductively coupled plasma mass spectrometry, atomic absorption spectroscopy and x-ray fluorescence) were conducted on the soil specimens collected from the 5 sites (named as Sites A1, A2, A3, A4 and A5) and the results were used to estimate the pollution indices (i.e., geo-accumulation index, normalized enrichment factor, contamination factor, and pollution load index). The obtained indices were utilized to assess the eco-toxicological risk level in the landfill site which indicated that the city has been severely contaminated by Cu, Mn, Ni, Pb and Zn. These levels have been developed along the stream towards the nearshore areas indicating uptake of soil degradation. The heavy metal contamination was classified to range from unpolluted to highly polluted, which indicated serious heavy metal pollution in the study area as related to municipal solid waste disposal in Tonekabon.

Geochemical Characteristics of Surface Sediments and an Evaluation of Trace Metal Pollution in Gomso Bay, Korea, 2011 (2011년 곰소만 표층퇴적물의 지화학적 특성 및 중금속 오염도 평가)

  • Kim, Chung-sook;Kim, Hyung Chul;Lee, Won Chan;Hong, Sokjin;Hwang, Dong-Woon;Cho, Yoon-Sik;Kim, Jin ho;Kim, Sunyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.567-575
    • /
    • 2017
  • To understand the geochemical characteristics of Gomso Bay, which features extensive Manila clam, we measured various geochemical parameters, organic matter, and trace metals (Cu, Cd, Pb, Zn, Cr, Hg, As and Fe) of intertidal and subtidal surface sediments in 2011. The surface sediments consisted of sedimentary facies including gravel (0.21%), sand (61.1%), silt (32.1%), and clay (6.5%). The chemical oxygen demand (COD) and acid volatile sulfide (AVS) values in most areas were below sediment quality criteria (COD, $20mg/g{\cdot}dry$; AVS, $0.2mg/g{\cdot}dry$). Trace metals in the surface sediments were below pollution thresholds, except for As (morderately polluted). Sediment quality was evaluated using the trace metal pollution load index (PLI) and ecological risk index (ERI), which showed that sediments were generally not polluted and at low risk; however, values along the outer bay were higher. We expect these results will be valuable for sustainable aquaculture prodution and environmental management in Gomso Bay.

Sediment Quality Assessment for Heavy Metals in Streams Around the Shihwa Lake (시화호 유역 하천 퇴적물에서의 중금속 오염도 평가에 관한 연구)

  • Jeong, Hyeryeong;Kim, Kyung-Tae;Kim, Eun-Soo;Ra, Kongtae;Lee, Seung-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.25-36
    • /
    • 2016
  • Heavy metals in the stream sediments around Shihwa Lake were studied not only to investigate the characteristics of spacio-temporal distribution but also to assess the pollution degree and ecological risk using various pollution indices. Among metals, Zn had the highest values (1,311 mg/kg) and Hg showed the lowest value (0.261 mg/kg). The order of mean concentrations (mg/kg) of metals was Zn>Cu>Pb>Cr>Ni>Co>As>Cd>Hg in stream sediments around Shihwa Lake. Metal concentrations showed different pollution pattern with industrial region, indicating that these metals originated from different sources and industrial region had higher metal concentration than rural/urban regions. The results of geoaccumulation index (Igeo) showed that the stream sediments were significantly polluted with Cd, Cu, Zn and Pb, indicating moderately to highly polluted by these metals. According to PLI consideration, industrial region was more seriously polluted by metals whereas an rural/urban region was not polluted. About 85% of sampling site for Cr, Ni, Cu, Zn and Pb from industrial regions were exceeded the PEL values. The mPELQ and SQI values derived from PEL of industrial region were classified as 'highly toxic' and 'very poor' and metal pollution level tend to be worse in wet season. This indicates that the industrial activities and stromwater runoff represents an important sources of heavy metals around Shihwa Lake.