• Title/Summary/Keyword: Pollutant removal

Search Result 366, Processing Time 0.032 seconds

Comparison of pollutant removal efficiency according to the locations of the supply and exhaust (격리병실내 급배기구 위치에 따른 오염물 제거효율 비교)

  • Won, An-Na
    • Journal of Urban Science
    • /
    • v.9 no.2
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.

Development of Pollutant Removal Model in the Artificial Wetland (인공습지의 수질개선 효과 분석모델 개발)

  • Choi, Ji-Yong
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2002
  • The wetland is a biologically integrated system consisting of water, soil, bacteria, plants, and animals. The wetland helps sustain the ecosystem, control the micro-climate and flood, maintain the ground water level, and provide fishing grounds. From the environmental standpoint, the wetland plays a vital role in reducing water pollution by filtering out sand and other polluted matters, producing oxygen, absorbing chemicals and nutrients. For these reasons, interest in restoring the wetlands has been steadily increasing. Artificial wetland, which is also referred to as created wetland or constructed wetland, is an alternative to natural wetland. Like natural wetland, artificial wetland is environmentally friendly and can effectively lower pollutant levels. The Korea government is actively reviewing the construction of artificial wetlands in mining and water supply areas to decrease nonpoint pollutant sources. This paper attempts to develop a pollutant removal model for the water quality improvement function of artificial wetlands. Artificial wetland can improve the quality of the water; however, depending on the type of water inflow, vegetation and hydrology, its effect can be different.

  • PDF

A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities (자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구)

  • Lee, Sang Hyuk;Cho, Hye Jin;Kim, Lee Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.

Pollutant Removal Efficiency of Sedimentation Basin at Inlet of an Irrigation Reservoir (저수지 내 유입부 침강지의 수질정화 효율)

  • Jang, Jeong-Ryeol;Choi, Sun-Hwa;Kwun, Soon-Kuk
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.473-479
    • /
    • 2004
  • A sedimentation basin (SB) at the inlet of an irrigation reservoir which was constructed using an auxiliary dam was monitored to evaluate its pollutant removal efficiency. Water sampling at three points, i.e., inflow stream, upstream and downstream of the reservoir, were taken 5 times before and after the construction of the SB in 1999 and 2003, respectively. No significant water quality variations in inflow stream were observed during these periods. The COD, T-N, T-P and SS removal efficiencies were 38, 24, 35 and 49%, respectively. The results indicated that those removal efficiencies significantly increased during the rainy season and COD removal efficiency, especially, was higher than others studies. The scale of SB in this study was rational as aspects of pollutant removal efficiency and hydraulic detention time. And it is recommended that SB, at inlet of an reservoir, should be constructed as completely separated structure from reservoir water body and having SAR Index from 0.7% to 1.0%.

Effects of Plant on Pollutant Removal Rate n Surface-flow Constructed Wetlands (자유수면형 인공습지에서 식물식재 유무가 처리효율에 미치는 영향)

  • Ham, Jong-Hwa;Kim, Hyung-Joong;Kim, Dong-Hwan;Hong, Dae-Byuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • Three different types of wetlands (unplanted wetland, reed planted wetland, cattail planted wetland) were constructed at the mouth of Seokmoon reservoir with 910 $m^2$ each to examine the effects of wetland plant on pollutant removal rate in constructed wetland, and operated for 9 years (2002~2010). Water depth of the wetland was maintained at 0.3~0.5 m, flow rate was about 40~200 $m^3$/day, and retention time was managed at about 1~5 days. There was no difference in removal rate of SS, TN, and TP between reed wetland and cattail wetland. Removal rate of SS and TN in planted wetland with reed and cattail were higher than unplanted wetland, whereas removal rate of TP in unplanted wetland was higher then planted wetland. The monthly variation of removal rate in planted wetlands was high compared with unplanted wetland. From the long term monitoring results, SS and TN removal rates of period3 (2008~2010) were higher than period1 (2002~2004) in planted wetland, whereas TP removal rate was decreased as time goes on. Overall, pollutant removal rate in constructed wetland was more influenced by existence of plants than by plant species. Although constructed wetland is operated long term period, SS, TN, and TP removal rate (SS 90 %, TN 60 %, TP 40 %) can be maintained high values.

Investigation on the effects of microbial community presence and survival to the water quality performance of urban stormwater nature-based solutions

  • Geronimo, Franz Kevin;Guerra, Heidi;Jeon, Minsu;Reyes, Nash jett;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.139-139
    • /
    • 2022
  • Nature-based solutions (NBS) involved conservation or rehabilitation of natural ecosystems or the creation of natural processes in modified or artificial ecosystems to mimic natural processes for the improved management of water (UN-Water, 2018). This study investigated the relationship between microbial presence and survival to the pollutant treatment performance of seven different stormwater NBS managing urban stormwater runoff. In this study, seven different stormwater nature-based solution (NBS) was investigated to identify the relationship of microbial community to the pollutant removal performance of stormwater NBS. Based on this study, Proteobacteria was found to be the most dominant microorganism for all stormwater NBS and IS followed by Acidobacteria and Actinobacteria. Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, WS3, and AF234118_p were found to have high positive correlation to most pollutant removal efficiency of different stormwater NBS (r-value: 0.62 to 0.68). Using Proteobacteria and Acidobacteria count in stormwater NBS, equations predicting pollutant removal performance were also developed and may be used in minimizing the cost for stormevent monitoring to identify the pollutant removal performance of stormwater NBS.

  • PDF

A Study on the Characteristics of Pollutant Removal in Secondary Effluent from Wastewater Treatment Plant Using Silver Nanoparticles on Activated Carbon (은나노 활성탄에 의한 하수 2차 처리수 중의 오염물질 제거 특성에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.353-360
    • /
    • 2014
  • This study targets the pollutant removal of secondary effluent from final clarifiers in wastewater treatment plant using silver nanoparticles on activated carbon. The removal efficiency and treatment characteristics of pollutant are anlayzed by perfoming experiments using granular activated carbon with silver nanoparticles and ordinary granular activated carbon. The specific surface area of granular activated carbon with silver nanoparticles is smaller than that of ordinary granular activated carbon. However, the removal efficiency of $COD_{Mn}$, T-N and T-P in experiments using activated carbon with silver nanoparticles are higher than that in experiment using ordinary granular activated carbon. That means the case of activated carbon with silver nanoparticles is much better at treatment activity. In addition, activated carbon with silver nanoparticles has antimicrobial activity because there is no microbe on the surface of it after experiments.

Remediation Groundwater contaminated with Nitrate and Phosphate using Micellar-enhanced ultrafiltration

  • 백기태;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.334-337
    • /
    • 2002
  • The drinking water industry faces a growing number of difficultiesin the treatment of groundwater for drinking water production. Groundwater sources are frequently contaminated with nitrates and phosphates due to usage of chemical fertilizer In this study, feasibility of micellar enhanced ultrafiltation (MEUF) was investigated to remediate groundwater contaminated with nitrate and phosphate. Ultrafiltration membrane was cellulose acetate with molecular weight cut off (MWCO) 10,000 and celtyl pyridinium chloride (CPC) was used to form pollutant-micelle complex with nitrate and phosphate. The results show that nitrate and phosphate rejections are satisfactory. The removal efficiency of nitrate and phosphate show 80% and 84% in single pollutant system, respectively with 3 molar ratio of CPC to pollutants. In the multi-pollutant systems, the removalefficiency increased to 90 % and 89 % for nitrate and phosphate, respectively, The presence of nitrate in the solutions did not affect the removal of phosphate and that of phosphate did not affect the removal of nitrate. The concentration of CPC in the permeate and removal efficiency of CPC was a function of the concentration of CPC in the feed solutions.

  • PDF

Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution

  • Torpy, Fraser R.;Pettit, Thomas;Irga, Peter J.
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.445-460
    • /
    • 2018
  • Exposure to indoor air pollution is an emerging world-wide problem, with growing evidence that it is a major cause of morbidity worldwide. Whilst most indoor air pollutants are of outdoor origin, these combine with a range of indoor sourced pollutants that may lead to high pollutant levels indoors. The pollutants of greatest concern are volatile organic compounds (VOCs) and particulate matter (PM), both of which are associated with a range of serious health problems. Whilst current buildings usually use ventilation with outdoor air to remove these pollutants, botanical systems are gaining recognition as an effective alternative. Whilst many years research has shown that traditional potted plants and their substrates are capable of removing VOCs effectively, they are inefficient at removing PM, and are limited in their pollutant removal rates by the need for pollutants to diffuse to the active pollutant removal components of these systems. Active botanical biofiltration, using green wall systems combined with mechanical fans to increase pollutant exposure to the plants and substrate, show greatly increased rates of pollutant removal for both VOCs, PM and also carbon dioxide ($CO_2$). A developing body of research indicates that these systems can outperform existing technologies for indoor air pollutant removal, although further research is required before their use will become widespread. Whilst it is known that plant species selection and substrate characteristics can affect the performance of active botanical systems, optimal characteristics are yet to be identified. Once this research has been completed, it is proposed that active botanical biofiltration will provide a cheap and low energy use alternative to mechanical ventilations systems for the maintenance of indoor environmental quality.

Analysis for Removal Efficiency of Non-point Pollution Sources by Constructed Wetlands (인공습지 형태에 따른 비점오염저감효율 분석)

  • Lee, Sang Hyuk;Kim, Lee Hyung;Cho, Hye Jin
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.102-108
    • /
    • 2014
  • Studies of non-point pollutant treatment facilities have widely been conducted for a decade, but natural non-point pollutant treatment facilities implemented on roads have not been carried out for the removal efficiency of non-point pollution sources. This study analyzed the removal efficiency of non-point pollution sources from constructed wetlands using monitoring and event mean concentration method. As a result of this study, removal efficiency of general non-point pollution sources as TSS, COD, BOD is relatively good, but removal efficiency of TN, TP, Cr, Zn, Pb is very small or nothing.