• Title/Summary/Keyword: Polishing force

Search Result 178, Processing Time 0.034 seconds

Study on chemical mechanical polishing characteristics of CdS window layer (CdS 윈도레이어의 화학적기계적연마 특성 연구)

  • Na, Han-Yong;Park, Ju-Sun;Ko, Pil-Ju;Kim, Nam-Hoon;Yang, Jang-Tae;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.112-112
    • /
    • 2008
  • 박막형 태양전지에 관한 연구는 1954년 D.C. Reynolds 가 단결정 CdS 에서 광기전력을 발견하면서부터 시작되었다. 고효율 단결정 규소 태양전지가 간편하게 제작되고 박막형 태양전지의 수명문제가 대두되어 한때는 연구가 중단되어지기도 하였으나, 에너지 문제가 심각해지면서 값이 저렴하고 넓은 면적에 쉽게 실용화 할 수 있는 박막형 태양전지에 많은 관심을 가지게 되었다. 박막형 태양전지에 사용되는 CdS는 II-VI 족 화합물 반도체로서 에너지금지대폭이 2.42eV인 직접천이형 n-type 반도체로서 대부분의 태양광을 통과시킬 수 있으며 가시광선을 잘 투과시키고 낮은 비저항으로서 광흡수층인 CdTe/$CuInSe_2$ 등과 같이 태양전지의 광투과층(윈도레이어)으로 널리 사용되고 있다. 이러한 이종접합 박막형 태양전지의 효율을 높이기 위해선 윈도레이어 재료인 CdS 박막의 낮은 전기 비저항치와 높은 광 투과도 값이 요구되어지고 있다. CdS 박막의 제작방법으로는 spray pyrolysis법, 스크린프린팅, 소결법, puttering법, 전착법, CBD(chemical bath deposition)법 및 진공증착법 등의 여러 가지 방법들이 보고되었다. 이 중 sputtering의 경우, 다른 방법들에서는 얻기 어려운 매우 얇은 두께의 박막 증착이 가능하며, 균일성 또한 우수하다. 또한 대면적화가 용이하여 양산화 기술로는 다른 제조 방법들에 비해 많은 장점을 가지고 있다. 따라서 본 연구에서는 sputtering에 의해 증착한 CdS의 박막에 광투과도 등의 향상을 위하여 CMP( chemical mechanical polishing) 공정을 적용하여 표면 특성을 개선하고자 하였다. 그 기초적인 자료로서 CdS 박막의 CMP 공정 조건에 따른 연마율과 비균일도, 표면 특성 등을 ellipsometer, AFM(atomic force microscopy) 및 SEM(scanning electron microscope) 등을 활용 하여 분석하였다.

  • PDF

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

Influence of Surface Roughness on Morphology of Aluminum Alloy After Pulsed-Laser Irradiation (펄스 레이저 조사 후 알루미늄 합금의 표면상태에 대한 표면 거칠기의 영향)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1105-1111
    • /
    • 2011
  • The objective of this study is to investigate the influence of surface roughness on the morphology of aluminum 6061-T6 alloy after irradiation with a Nd:YAG pulsed laser. The test specimen was prepared by a polishing process using a diamond paste ($1{\mu}m$) and emery polishing papers (#100, #220, #600, #2400) to obtain different initial surface roughness. After irradiation with ten pulsed-laser shots, the surface morphology was examined by using scanning electron microscopy (SEM), optical microscopy (OM), and atomic force microscopy (AFM). The diameter of the melted zone increased with the surface roughness because the multiple reflections and absorption of the laser beam occurred on the surface because of the surface roughness, so that the absorptance of the laser beam changed. This result was verified using the relative absorptance calculated from the diameter of the melted zone with the surface roughness and the diameter increased with the average surface roughness.

Particle Removal on Buffing Process After Copper CMP (구리 CMP 후 버핑 공정을 이용한 연마 입자 제거)

  • Shin, Woon-Ki;Park, Sun-Joon;Lee, Hyun-Seop;Jeong, Moon-Ki;Lee, Young-Kyun;Lee, Ho-Jun;Kim, Young-Min;Cho, Han-Chul;Joo, Suk-Bae;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Copper (Cu) had been attractive material due to its superior properties comparing to other metals such as aluminum or tungsten and considered as the best metal which can replace them as an interconnect metal in integrated circuits. CMP (Chemical Mechanical Polishing) technology enabled the production of excellent local and global planarization of microelectronic materials, which allow high resolution of photolithography process. Cu CMP is a complex removal process performed by chemical reaction and mechanical abrasion, which can make defects of its own such as a scratch, particle and dishing. The abrasive particles remain on the Cu surface, and become contaminations to make device yield and performance deteriorate. To remove the particle, buffing cleaning method used in post-CMP cleaning and buffing is the one of the most effective physical cleaning process. AE(Acoustic Emission) sensor was used to detect dynamic friction during the buffing process. When polishing is started, the sensor starts to be loaded and produces an electrical charge that is directly proportional to the applied force. Cleaning efficiency of Cu surface were measured by FE-SEM and AFM during the buffing process. The experimental result showed that particles removed with buffing process, it is possible to detect the particle removal efficiency through obtained signal by the AE sensor.

Process Optimization for Reduction of Waste Acids of Electropolishing Solution using Round Bus Bar (구형 부스바를 이용한 전해연마액의 폐산 폐기물 감소를 위한 공정 최적화)

  • Kim, Soo Han;Cho, Jaehoon;Park, Chulhwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.722-727
    • /
    • 2016
  • In this study, we attempted to reduce the generation of waste acids in the electropolishing process by improving the current efficiency. The optimum conditions of the electropolishing process when using the round bus bar were determined by the Taguchi method. The current density, polishing time, electrolyte temperature and flow rate were selected as the control factors for the current efficiency in the electropolishing process. An orthogonal array was created by considering three levels for each factor and experiments were carried out. The larger-the-better SN ratios were calculated by the Taguchi method. The current density was the most important factor affecting the current efficiency and the polishing time was the least important one. The optimum conditions to minimize the generation of waste acids were a current density of $45A/dm^2$, polishing time of 4 min, electrolyte temperature of $65^{\circ}C$ and flow rate of 7 L/min. The results of the ANOVA confirmed that the effects of the current density, electrolyte temperature and flow rate are significant at the 95% confidence level. The increase in the contact area and contact force afforded by using the round bus bar improved the current efficiency which, in turn, reduced the amount of waste acids generated. Further research is planned to investigate the effect of the type of bus bar on the current efficiency.

A Study on the Improvement of Oxide-CMP Characteristics by Dispersion Time and Content of Abrasive (연마제의 분산시간과 첨가량이 Oxide-CMP에 미치는 영향)

  • Park, Sung-Woo;Han, Sang-Jun;Lee, Sung-Il;Lee, Young-Kyun;Choi, Gwon-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.527-527
    • /
    • 2007
  • CMP가 1980년 IBM에 의해 반도체 웨이퍼의 표면 연마를 위해 적용된 후, 많은 연구 개발의 노력으로 반도체 집적회로의 제조 공정에서 필수 핵심기술이 되었으나, 소모자재(연마패드, 탄성지지대, 슬러리, 패드 컨디셔너)의 비용이 CMP 공정 비용의 70% 이상을 차지하는 등 제조단가가 높다는 단점을 극복할 수가 없었다. 특히, 고가의 슬러리가 차지하는 비중이 40% 이상을 넘고 있어, 슬러리 원액의 소모량을 줄이기 위한 연구들이 현재 활발히 연구 중이다. 슬러리의 변수로는 연마입자의 종류 및 특성, 용액의 pH, 연마입자의 슬러리내 안정성 등이 있다. 슬러리내 연마입자는 연마량과 균일도 측면에서 밀접한 관계를 가지고 있다. 또한, 연마제의 영향에 따라 연마율의 차이 즉, CMP 특성의 변화를 보이고 있기 때문에 투입량 또한 최적화가 필요하다. 본 연구에서는 새로운 연마제의 특성을 알아보기 위해 탈이온수(de-ionized water; DIW)에 $CeO_2,\;MnO_2,\;ZrO_2$ 등을 첨가한 후 분산시간에 따른 연마 특성과 atomic force microscopy (AFM)분석을 통해 표면 거칠기를 비교 분석하였다. 그리고, 세 가지 종류의 연마제를 각각 1wt%, 3wt%, 5wt% 첨가하여 산화막에 대한 CMP 특성을 알아본 후, scanning electron microscopy (SEM) 측정과 입도 분석을 통해 그 가능성을 알아보았다.

  • PDF

The characteristics of Ultra Precision Machine of Optical crystals for Infrared Ray (적외선 광학소자의 초정밀 절삭특성에 관한 연구)

  • Kim G.H.;Yang Y.S.;Kim H.S;Sin H.S.;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.414-417
    • /
    • 2005
  • Single point diamond turning technique for optical crystals is studied in this paper. The main factors which are influential the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimal machining conditions for ductile cutting of optical crystals and to apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material(Ge). Many technical challenges are being tried for the large space infrared telescope, which is one of the major objectives of the National Strategic Technology Road Map (NSTRM).

  • PDF

Improvement of Mixed Abrasive Slurry (MAS) Characteristics According to the Abrasive Adding (연마제 첨가량에 따른 Mixed Abrasive Slurry (MAS)의 CMP 특성 고찰)

  • Lee, Sung-Il;Lee, Young-Kyun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.380-381
    • /
    • 2006
  • Chemical mechanical polishing (CMP) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, the cost of ownership and cost of consumables are relatively high because of expensive slurry. In this paper, we studied the mixed abrasive slurry (MAS). In order to save the costs of slurry, the original silica slurry was diluted by de-ionized water (DIW). And then, $ZrO_2$, $CeO_2$, and $MnO_2$ abrasives were added in the diluted slurry in order to promote the mechanical force of diluted slurry. We have also investigate the possibility of mixed abrasive slurry for the oxide CMP application.

  • PDF

On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process (연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구)

  • Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.404-408
    • /
    • 2009
  • In this paper, the relationship between the material removal rate and the interfacial mechanical properties at particle-surface contact situation, which can be seen in an abrasive machining process using micro/nano-sized particles, was discussed. Friction and stiffnesses were measured experimentally on an atomic force microscope (AFM) by using colloidal probes which have a silica colloid particle in place of tip to simulate a particle-flat surface contact in an abrasive machining process. From the experimental investigation and theoretical contact analysis, the interfacial contact properties such as lateral stiffness of contact, friction, the material removal rate were presented with respect to some of material surfaces and the relationship between the properties as well.

Metal CMP Characteristics by Oxidizer Modification (Oxidizer modify에 의한 Metal CMP 특성)

  • Park, Suno-Woo;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun;Chang, Eui-Goo;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.727-730
    • /
    • 2004
  • In this paper, so as to investigate the influence of oxidizer for each metal film using the alumina-based slurry, we have peformed the W/Ti metal-CMP process by adding $H_2O_2$ as a representative oxidizer from 1 wt% to 9 wt%, respectively. As an experimental result, for the case of 5 wt% oxidizer added, the removal rates were improved and polishing selectivity of 1.4 : 1 was obtained. Also, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5 wt% hydrogen peroxide such as $Fe(NO_3)_3$, $H_2O_2$, and $KIO_3$. Finally, atomic force microscope (AFM) measurements were carried out for the analysis of surface morphology and root mean square (RMS) roughness after CMP Process.

  • PDF