• Title/Summary/Keyword: Polishing

Search Result 1,668, Processing Time 0.024 seconds

Polishing Characteristics and Development of Automatic Die Polishing Machine by Liquid Honing (액체호닝에 의한 금형 자동 사상기계개발 및 가공 특성)

  • 김재도;류기덕;홍정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.162-168
    • /
    • 2000
  • The automatic die polishing machine by liquid honing has been developed and experimented on the surface of machined die. The goal of development in the automatic die polishing machine by liquid honing is to increase the accuracy and the productivity in die polishing. To reach this goal, the polishing machine consists of the automatic measuring device for contour of die, the nozzle and pumping system to spray the powder mixed with liquid, and the 3-axis guides. Before polishing, the measuring device with a semiconductor laser scans the surface of mould to get the data of contour. The data store a PC and use to control the nozzle head to move above a couple of centimeters on the machined surface of die. The experimental parameters are the spraying time, the pressure, the size of abrasive grain and the mixing ratio between abrasive grain and liquid. The surface roughness is measured on the polished die which are SKDl 1 and Al7075 machined by NC. The surface roughness indicates the values of Rmax 0.5${\mu}{\textrm}{m}$ for Al7075 and Rmax 1.4${\mu}{\textrm}{m}$ for SKDl 1. It reduces the polishing time significantly and reduces the monotonous work for labors. As the results, the liquid honing system is useful method to apply for the die polishing and the automatic die polishing machine using liquid honing shows that it's very effective processing ability.

  • PDF

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

Standardization of Polishing Work by MAGIC Polishing Tool (MAGIC 숫돌에 의한 연마작업의 표준화)

  • Cho, Jong-Rae;Lee, Sang-Tea;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.39-48
    • /
    • 2005
  • As the industrial development is accelerated, a new machining process and system are keenly required to achieve super precision surface finish. Especially to get ground surface finish fer complicated and narrow inner shape of molds, it is impossible with the existing methods so that a new method is being required to be developed. A new material, called Magic(MAGnetic Intelligent Compounds), is finally made and it is called Magic machining that uses this material. There is a way to make a material as follows, the mixture of magnetic particles, bonding material and particles of abrasive grain should be melt down by proper heat, and then this mixture put in a mold and cool down in magnetic field which has a uniform direction. This new polishing method is spotlighted as an excellent solution to the existing problems. However it hasn't reported any study about the influence of the machining conditions of polishing velocity, amplitude and polishing pressure to the surface roughness yet. This study would examine closely the influence of polishing conditions of the Magic polishing tool to the surface finish to decide the optimum polishing condition and to standardize the Magic polishing work.

Improvement of Transmittance and Surface Integrity of Glass Mold for light-hardening polymer Using MR Polishing (HR polishing에 의한 광경화성수지 성형용 글래스 몰드의 투과율 및 표면품위 향상)

  • Lee, J.W.;Kim, D.W.;Cho, M.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.78-83
    • /
    • 2009
  • In general, Light-hardening polymer was used UV nanoimprint technology. A light-hardening polymer was had the problem of poor hardness, durability. In order to overcome the problem of polymer, inter change optical glass. However glass is very manufacture and a lowering of standars transmittance. In order to glass recover was necessary polishing process. The process is magnetorheological fluids polishing. MR polishing has been developed as a new precision finishing technique to obtain a fine surface. Hence, Magnetorheological fluids has been used for micro polishing to get micro parts. This polishing process guarantees high polishing quality by controlling the fluid density electrically. The applied material in experiments is fused silica glass. Fused silica glass is widely used in the optical field because of high degree of purity. For MR polishing experiments, MR fluid was composed with DI-water, carbonyl iron and nano slurry ceria. The wheel speed and electric current were chosen as the variables for analyzing the characteristics of MR polishing process. Outstanding surface roughness of Ra=1.58nm was obtained on the fused silica glass specimen. And originally glass transmittance was recover on the fused silica glass.

  • PDF

Rotational Stability and Lubrication State Evaluation of the Polishing Head for High Speed Polishing (폴리싱 고속화를 위한 연마헤드의 회전 안정성과 윤활 상태 평가)

  • Lee, Hocheol;Choi, Minseok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.301-306
    • /
    • 2016
  • High speed polishing can kinematically increase the polishing removal rate by using the conventional Preston equation, especially for hard substrates such as sapphire or diamond. However, high speed effects should be clarified beforehand considering the lubrication state and process parameter variations. In this paper, we developed a polishing experimental method and apparatus to determine the lubrication state by measuring the real time friction coefficient using two load cells. Through experiments, we obtained a boundary lubrication state above 0.35 of the friction coefficient by using low table speed and high polishing load, indicating a synchronized stable behavior in polishing head rotation. However, larger Stribeck indexes by a high speed above 200 rpm can generate a hydrodynamic lubrication state below 0.25 of the low friction coefficient. This causes the polishing head rotation to stop. A forced and synchronized head rotation is required for high speed polishing.

Application of Hard Porous Pad in Metal CMP Process (금속 CMP 공정시 경질 다공성 패드의 적용)

  • 김상용;김남훈;김인표;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.385-389
    • /
    • 2003
  • There are four main components of the CMP process: polishing pad, slurry, elastic supporter, and pad conditioner. The polishing pad is an essential component to the reproducibility of polishing uniformity in CMP process. However, the polishing pad in recently using metal CMP raised the several points of high cost caused by the increase of cycle time and the many usage of slurry. It is necessary to develop the novel polishing pad which would lead the cost reduction by the higher pad life-cycle, minimized cycle time and lower slurry usage. The characteristics of polishing pad were studied on the effects of different sets of the Polishing pad, which can be applied to metal chemical mechanical polishing process for global planarization of multilevel interconnection structure. The main purpose of this experiment is cost reduction by the increase of pad life-time, the decrease of cycle time and the lower usage of slurry through the specific hard porous structured pad design. It is confirmed that the novel polishing pad made the slurry usage decrease to 60% as well as the pad life-time increase twice with the 25% improvement of removal rate. The polishing time could be decreased and it also helped the cycle time to diminish. It can be expected that this results will help both the process throughput and the device yield to be improved.

A study of minimizing edge chipping of coverglass using MR Polishing (MR Polishing을 이용한 커버글라스의 굽힘강도 향상에 관한 연구)

  • Lee, Jeong-woo;Kim, Ji-Hun;Lim, Dong-Wook;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.50-54
    • /
    • 2022
  • Coverglass of electronic equipments is thinner and slimmer, so the glass must have good bending strength. In these days, the polishing edge of glass is used by solid tool like grinding wheel. But solid tool leave micro crack or edge chipping in edge of glass. MR polishing is an optimal method by polishing edge of glass. MR polishing is used MR fluid that is a liquid tool. MR polishing doesn't leave tool path or residual stress, micro crack and edge chipping unlike grinding wheel polishing. In this paper, the results of grinding and MR polishing were compared and analyzed to improve bending strength by minimizing edge chipping of cover glass. It was derived that the depth and size of cracks have a significant influence on the bending strength of the glass edge. The edges of the glass using MR grinding were analyzed to have a better surface and higher bending strength than the glass using abrasive wheel grinding. It was confirmed that MR polishing had an effect on strength improvement by effectively removing cracks in the specimen.

Development of An User-Friendly Integrated Program and Teaching System for Automatic Polishing Robot System (자동 연마 시스템의 사용자 지향형 통합 프로그램 및 자동 교시 시스템 개발)

  • Go, Seok-Jo;Lee, Min-Cheol;Lee, Man-Hyeong;An, Jung-Hwan;Jeon, Cha-Su;Lee, Don-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.334-343
    • /
    • 2001
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. Some workers tend to gradually avoid the polishing work because of the poor environment caused by dust and noise. In order to reduce the polishing time and cope with the shortage of skilled workers, a user-friendly automatic polishing system was developed in this research. The polishing system with five degrees of freedom is able to keep the polishing tool normal to the die surface. The polishing system is controlled by a PC-NC controller. To easily operate the developed polishing robot system, this study developed an integrated program in the Windows environment. This program consists of four modules: the polishing module, the graphic simulator, the polishing data generation module, and the teaching module. Also, the automatic teaching system was developed to easily obtain teaching data and it consists of a three dimensional joystick and a proximity sensor. The joystick is used to simultaneously drive the polishing system to an arbitrary orientation and the proximity sensor is used to obtain teaching points precisely. Also, to evaluate the stability of the driving program and the teaching system, polishing experiments of a die of saddle shape were carried out.

  • PDF

Physical characteristics of ceramic/glass-polymer based CAD/CAM materials: Effect of finishing and polishing techniques

  • Ekici, Mugem Asli;Egilmez, Ferhan;Cekic-Nagas, Isil;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2019
  • PURPOSE. The aim of this study was to compare the effect of different finishing and polishing techniques on water absorption, water solubility, and microhardness of ceramic or glass-polymer based computer-aided design and computer-aided manufacturing (CAD/CAM) materials following thermocycling. MATERIALS AND METHODS. 150 disc-shaped specimens were prepared from three different hybrid materials and divided into five subgroups according to the applied surface polishing techniques. All specimens were subjected up to #4000 grit SiC paper grinding. No additional polishing has been done to the control group (Group I). Other polishing procedures were as follows: Group II: two-stage diamond impregnated polishing discs; Group III: yellow colored rubber based silicone discs; Group IV: diamond polishing paste; and Group V: Aluminum oxide polishing discs. Subsequently, 5000-cycles of thermocycling were applied. The analyses were conducted after 24 hours, 7 days, and 30 days of water immersion. Water absorption and water solubility results were analyzed by two-way ANOVA and Tukey post-hoc tests. Besides, microhardness data were compared by Kruskal-Wallis and MannWhitney U tests (P<.05). RESULTS. Surface polishing procedures had significant effects on water absorption and solubility and surface microhardness of resin ceramics (P<.05). Group IV exhibited the lowest water absorption and the highest microhardness values (P<.05). Immersion periods had no effect on the microhardness of hybrid ceramic materials (P>.05). CONCLUSION. Surface finishing and polishing procedures might negatively affect physical properties of hybrid ceramic materials. Nevertheless, immersion periods do not affect the microhardness of the materials. Final polishing by using diamond polishing paste can be recommended for all CAD/CAM materials.

Analytic Study on Pulsed-Laser Polishing on Surface of NAK80 Die Steel (펄스레이저에 의한 NAK80 금형강 표면연마의 해석적 연구)

  • Kim, Kwan-Woo;Kim, Seung-Hwan;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.136-141
    • /
    • 2015
  • Laser surface polishing is a polishing method for improving surface roughness using an integrated laser beam. Using a laser for surface polishing can improve the surface condition without physical contact or chemical action. Laser polishing has mainly been used to polish the surface of diamond or optical articles, such as lenses and glasses. Recently, diverse studies on laser polishing for metals have been conducted. The analytic study of laser surface polishing has been conducted with experimental trials for comparison, so that the proper conditions for laser polishing can be recommended. In this study, laser surface polishing was simulated in order to predict the heat-affected zone on the die steel depending on the power of the pulsed laser. The simulated results were verified by comparing them to those of the experimental trials. Through this study, therefore, the application of FEM to the selection of appropriate laser conditions could be possible.