• Title/Summary/Keyword: Policy Simulation

Search Result 1,018, Processing Time 0.022 seconds

A Simulation Method of Causal Maps: NUMBER (인과지도의 시뮬레이션 방법론: NUMBER)

  • 김동환
    • Korean System Dynamics Review
    • /
    • v.1 no.2
    • /
    • pp.91-111
    • /
    • 2000
  • Causal maps or cognitive maps have been widely used to get insights for complex systems or decision makers. When insights come from the system behavior rather than its structure, we need simulation of causal maps and cognitive maps. In this paper, a method for directly converting causal maps and cognitive maps into stock-flow diagrams that can be simulated in computers in proposed. This method is called as NUMBER. NUMBER is an abbreviation for 'Normal Unit Modeling By Elementary Relationship'. In this paper, NUMBER is applied to a cognitive map of policy maker to show its usefulness.

  • PDF

A LSP Allocation Policy for MPLS Traffic Engineering (MPLS에서 트래픽 제어를 위한 LSP 설정 방법)

  • 이주활
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.04a
    • /
    • pp.18-21
    • /
    • 2000
  • 본 논문에서는 트래픽 제어를 통해 네트워크 자원을 효율적으로 이용하는 방법을 레이블 할당측면으로 연구하였다. MPLS에서 하나의 레이블은 하나의 LSP(Label Switched Path)를 가진다. LSP가 설정되어 자료의 전송이 이루어지는 중간에 경로를 변경하거나 해야 할 경우로 가정한다. 이 때 각 노드들은 제안하는 알고리즘에 의해 혼잡신호 혹은 혼잡 예고 신호를 수신하여 동적인 방법 혹은 정적인 방법으로 LSP를 재설정하고, 레이블을 다시 할당하게 되는 것이다.이러한 알고리즘을 OPNET을 통해 시뮬레이션한다. 본 시뮬레이션에서는 LSR, LER들로 이루어진 순수한 MPLS 네트워크를 가정한다. 이러한 가정아래 제안된 네트워크의 시뮬레이션하여 네트워크의 활용도를 분석하여 제안하는 알고리즘이 우수성을 보인다.

  • PDF

An ICN In-Network Caching Policy for Butterfly Network in DCN

  • Jeon, Hongseok;Lee, Byungjoon;Song, Hoyoung;Kang, Moonsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1610-1623
    • /
    • 2013
  • In-network caching is a key component of information-centric networking (ICN) for reducing content download time, network traffic, and server workload. Data center network (DCN) is an ideal candidate for applying the ICN design principles. In this paper, we have evaluated the effectiveness of caching placement and replacement in DCN with butterfly-topology. We also suggest a new cache placement policy based on the number of routing nodes (i.e., hop counts) through which travels the content. With a probability inversely proportional to the hop counts, the caching placement policy makes each routing node to cache content chunks. Simulation results lead us to conclude (i) cache placement policy is more effective for cache performance than cache replacement, (ii) the suggested cache placement policy has better caching performance for butterfly-type DCNs than the traditional caching placement policies such as ALWASYS and FIX(P), and (iii) high cache hit ratio does not always imply low average hop counts.

A Study on the Design and Implementation of Algorithm for Next Generation Cyber Certificate Security (차세대 사이버 인증 보안을 위한 알고리즘의 설계 및 구현에 관한 연구)

  • Lee, Chang-Jo;Kim, Sang-Bok
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.69-78
    • /
    • 2006
  • ID security policy is generally formulated from the input of many members of an organization, including security officials, line managers, and ID resource specialists. However, policy is ultimately approved and issued by the organization's senior management. In environments where employees feel inundated with policies, directives, guidelines and procedures, an ID security policy should be introduced in a manner that ensures that management's unqualified support is clear. This paper will discuss Next Generation Cyber Certificate security policy in terms of the different types program-level and issue-specific, components, and Design and Implementation of Security Algorithm Simulation based on 4GL, PowerBuilder7.0.

  • PDF

A Real-time Dynamic Storage Allocation Algorithm Supporting Various Allocation Policies (다양한 할당 정책을 지원하는 실시간 동적 메모리 할당 알고리즘)

  • 정성무
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1648-1664
    • /
    • 2000
  • This paper proposes a real-time dynamic storage allocation algorithm QSHF(quick-segregated-half-fit) that provides various memory allocation policies. that manages a free block list per each word size for memory requests of small size good(segregated)-fit policy that manages a free list per proper range size for medium size requests and half-fit policy that manages a free list per proper range size for medium size requests and half-fit policy that manages a free list per each power of 2 size for large size requests. The proposed algorithm has the time complexit O(1) and makes us able to easily estimate the worst case execution time(WCET). This paper also suggests two algorithm that finds the proper free list for the requested memory size in predictable time and if the found list is empty then finds next available non-empty free list in fixed time. In order to confirm efficiency of the proposed algorithm we simulated the memory utilization of each memory allocation policy. The simulation result showed that each policy guarantees the constant WCET regardless of memory size but they have trade-off between memory utilization and list management overhead.

  • PDF

The Effect of Warehouse Layout Design on Order Picking Efficiency

  • Kim, Hyun;Hur, Yun-Su;Bae, Suk-Tae
    • Journal of Navigation and Port Research
    • /
    • v.33 no.7
    • /
    • pp.477-482
    • /
    • 2009
  • In this paper the order picking problem in warehouses is considered, a topic which has received considerable attention from the international academic body in recent years. The order picking problem deals with the retrieval of order items from prespecified locations in the warehouse, and its objective is usually the minimization of travel time or travel distance. Hence, a well-thought order picking policy in combination with an appropriate storage policy will enhance warehouse efficiency and reduce operational costs. This paper starts with a literature overview summarizing approaches to routing order pickers, assigning stock-keeping units to pick locations and designing warehouse layouts. Since the layout design might affect both storage and routing policies, the three factors are interdependent with respect to order picking performance. To test these interdependencies, a simulation experiment was set up, involving two types of warehouse layout, four types of storage policy, five well-known heuristics and five sizes of order picking list. Our results illustrate that from the point of view of order picking distance minimization it is recommended to equip the warehouse with a third cross aisle, although this comes at the cost of a certain space loss. Additionally, we propose a set of most appropriate matches between order picking heuristics and storage policies. Finally, we give some directions for further research and recommend an integrated approach involving all factors that affect warehouse efficiency.

Decision-Making Problems for Shop Floor Simulation in Discrete Part Manufacturing

  • Jang, Pyoung-Yol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1114-1116
    • /
    • 2005
  • Shop floor control systems (SFCS) are used to make real-time planning and scheduling decisions to optimize the efficiency of manufacturing shops. These shops exhibit a non-linear, dynamic evolution caused by 1) the concurrent flows of disparate parts following complex routings, 2) a variety of machines that breakdown at random times, 3) stochastic arrivals of new parts with different priorities, and 4) jobs that have probabilistic processing times and transportation times. Because of their ability to capture that evolution faithfully, simulation models are often used in the aforementioned decisions. In this paper, various types of decision-making problems encountered in a shop floor have been investigated and categorized into process related problems and resource related problems for shop floor simulation.

  • PDF

System dynamic modeling and scenario simulation on Beijing industrial carbon emissions

  • Wen, Lei;Bai, Lu;Zhang, Ernv
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.355-364
    • /
    • 2016
  • Beijing, as a cradle of modern industry and the third largest metropolitan area in China, faces more responsibilities to adjust industrial structure and mitigate carbon emissions. The purpose of this study is aimed at predicting and comparing industrial carbon emissions of Beijing in ten scenarios under different policy focus, and then providing emission-cutting recommendations. In views of various scenarios issues, system dynamics has been applied to predict and simulate. To begin with, the model has been established following the step of causal loop diagram and stock flow diagram. This paper decomposes scenarios factors into energy structure, high energy consumption enterprises and growth rate of industrial output. The prediction and scenario simulation results shows that energy structure, carbon intensity and heavy energy consumption enterprises are key factors, and multiple factors has more significant impact on industrial carbon emissions. Hence, some recommendations about low-carbon mode of Beijing industrial carbon emission have been proposed according to simulation results.

Intelligent System Predictor using Virtual Neural Predictive Model

  • 박상민
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.101-105
    • /
    • 1998
  • A large system predictor, which can perform prediction of sales trend in a huge number of distribution centers, is presented using neural predictive model. There are 20,000 number of distribution centers, and each distribution center need to forecast future demand in order to establish a reasonable inventory policy. Therefore, the number of forecasting models corresponds to the number of distribution centers, which is not possible to estimate that kind of huge number of accurate models in ERP (Enterprise Resource Planning)module. Multilayer neural net as universal approximation is employed for fitting the prediction model. In order to improve prediction accuracy, a sequential simulation procedure is performed to get appropriate network structure and also to improve forecasting accuracy. The proposed simulation procedure includes neural structure identification and virtual predictive model generation. The predictive model generation consists of generating virtual signals and estimating predictive model. The virtual predictive model plays a key role in tuning the real model by absorbing the real model errors. The complement approach, based on real and virtual model, could forecast the future demands of various distribution centers.

  • PDF

Dynamic Cache Partitioning Strategy for Efficient Buffer Cache Management (효율적인 버퍼 캐시 관리를 위한 동적 캐시 분할 블록교체 기법)

  • 진재선;허의남;추현승
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.35-44
    • /
    • 2003
  • The effectiveness of buffer cache replacement algorithms is critical to the performance of I/O systems. In this paper, we propose the degree of inter-reference gap (DIG) based block replacement scheme that retains merits of the least recently used (LRU) such as simple implementation and good cache hit ratio (CHR) for general patterns of references, and improves CHR further. In the proposed scheme, cache blocks with low DIGs are distinguished from blocks with high DIGs and the replacement block is selected among high DIGs blocks as done in the low inter-reference recency set (LIRS) scheme. Thus, by having the effect of the partitioning the cache memory dynamically based on DIGs, CHR is improved. Trace-driven simulation is employed to verified the superiority of the DIG based scheme and shows that the performance improves up to about 175% compared to the LRU scheme and 3% compared to the LIRS scheme for the same traces.

  • PDF