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Abstract

A large system predictor, which can perform prediction of
sales trend in a huge number of distribution centers, is presented
using neural predictive model. There are 20,000 number of
distribution centers, and each distribution center need to forecast
future demand in order to establish a reasonable inventory
policy. Therefore, the number of forecasting models corresponds
to the number of distribution centers, which is not possible to
estimate that kind of huge number of accurate models in ERP
(Enterprise Resource Planning) module. Multilayer neural net as
universal approximation is employed for fitting the prediction
model. In order to improve prediction accuracy, a sequential
simulation procedure is performed to get appropriate network
structure and also to improve forecasting accuracy. The
proposed simulation procedure includes neural structure
identification and virtual predictive model generation. The
predictive mode! generation consists of generating virtual
signals and estimating predictive model. The virtual predictive
model! plays a key role in tuning the real model by absorbing the
real model errors. The complement approach, based on real and
virtual model, could forecast the future demands of various
distribution centers.

L. Introduction

Modeling and identification method, which is to find the
characterization of the structure of a mathematical input-output
relationship from observed data, are needed for interpretation of
observation and measurements. The interpretation could be
utilized directly for monitoring, diagnosing, and analyzing
process. However, there are no general methods that always can
be used to get a complete model. A process cannot not be
characterized by one mathematical model [Astrom and
Wittenmark 1990].

In modeling a time-vary system like a non-stationary process,
multiple models are frequently used. Since the mapping relation
of a non-stationary process could be time dependent, time
dependent multiple models are utilized for describing dynamic
processes. This concept is interpreted as task decomposition in
that a non-stationary process is decomposed into a set of
stationary process, and each sub-stationary process is
characterized by one model [Wang 1996].

The situation is occurred that there is no prior information on a
process and even multiple models are not appropriate for
characterizing a process. It might be difficult to establish a
mathematical relationship of a process from the collected
observations and measurements. The difficulties in modeling
can be caused by the complexities of process nature. The
difficulties could be also caused by that observations and
measurements are not suitable for describing a process.

This paper is motivated by modeling a process when a process
is not easily characterized either by one model nor by collected
variables. The collected variables could be decomposed inio
other sub-signals which are not available for measurements and
correlated each others. Real and virtual modeling approach are
complementarily developed for increasing modeling accuracy.
Real modeling, which is interpreted as a coarse modeling, uses
real measurements for modeling an input-output system relation
and the proposing virtual modeling is also performed
continuously using the real modeling errors. In virtual modeling,
newly generated input signals, which are obtained summing the
real modeling error and artificially generated uniform series, are
utilized for characterizing mapping relation.

The paper consists of five sections. Some background and a
problem definition are described in section 2. In section III, the
multi-phase system identification method is presented. The
proposed on-line system identification using neural network and
virtual system generation is suggested. In section IV, computer
simulation is given to verify the proposed method. In final
section, conclusion and further research issues are discussed.

I1. Problem Statements and Background
Problem Statements

Consider the discrete-time, non-linear stochastic model.
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where Y, is the output measurement, %, is the control input,
¢, is the Gaussian white-noise process with known variance

0’3, ® s the parameter vector, and ¢ is the discrete time

index. The model orders /7., n,, n,, and the function g are

unknown. X’ is sub-system measurement which is not
available for measurement. In this case, a process model should
be characterized by the measurable existing observations. The
main issue of this paper is to establish model structure using

multi-phase system identification as follows.
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A :(/4?—1 ,...,A/[—n, ) is a collection of time series which is
followed by the given compact uniform distribution from U[0, /]

for all i=/,2,. k. Rl and V, are an unknown mapping function.

W, is the present modeling error at time t. The focus is given to

verify that the process model in equation (1) could be
approximated by the multi-phase model described in equation (2).
The multi-phase model approximation is more practical and
applicable in that it is based on all measurable and obtainable
variables. Even though the multi-phase model relies on virtual
series of a given compact distribution, all elements are computed
or observed while the model in equation (1) is based on some no-

measurable elements.
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Now, a recursive relation in modeling error is obtained as follows
K=-1 _ k=2
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From the equation (2), the present multi-phase modeling error,

W, is obtained as
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Related works

Lapedes and Farber [1987] presented , who used a 1-15-1(i.e.
one input node, 15 hidden nodes and one output node) feed-
forward back-propagation network to map the deterministic input-
output functions,

Y = 4x1—1(1—xt—1)

which are quadratic and smooth in the interval 0 < x <1. It was
a clear demonstration of the power of a multilayer network to
approximate a non-linear function without a prior information
about the system model. Similar results are obtained by Hecht-
Nielsen [1989] and Funahashi [1989]. They show that any
continuous function is approximately realizable by network with
monotone increasing continuous or a sinusoidal activation
function.

Narendra and Parthasarathy (1990) presented a novel and clear
neural network application for both nonlinear-dynamical system
identification and control. They considered SISO four models
which can also be generalized to multivariable case. They gave a
clear demonstration how neural network could be used for

estimating mapping function () and g(), which could be used
effectively for identification and control of nonlinear dynamical
systems.

Recently, Wang(1996) presented multi-phase modeling
approach to prediction of a non-stationary process. His approach
was based on decomposing a non-stationary series into a set of
stationary sub-series. After a non-stationary process is
decomposed into appropriate numbers of stationary processes, an
multi-phase RBF neural network is designed for modeling the
decomposed stationary process.

III. Multi-phase
Generation

Neuro-identification by Virtual System

1) Multi-phase System Identification
Since a process might not be easily characterized by one
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mathematical model, one could be represented effectively by
multiple models ranging from detailed and complex simulation
models to very simple models [Astrom and Wittenmark 1990].
The existing works showed that neural network could be utilizes
for approximating a mapping function. Multiple models, which is
aimed at increasing modeling accuracy, could be associated with
multiple neural networks. Following equations show how multi-
phase system identification is designed using multiple neural
networks. Suppose the

Y = f(y,_1, -y/—nyvux—1'~-v
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In equation (5), a single neural network, which is associated with
single phase modeling, is employed for stochastic system
identification. In this case the mapping structure has

( n,+n,+n, ) to one mapping structure where the

corresponding vector is

/1[=(y1-1'-
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equal to
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t-n,

N
w w, is the weight vector. Since J)/ ; is the estimated system
output, the modeling error between the output generated the first

phase neural network and the observed output /. is

etN‘ which is expressed in equation (6).

Since a complex process is not easily characterized by one
mapping model, the first phase modeling errors might be required
to perform re-modeling procedure in equation (7). The re-
modeling procedure is based on the fact that the series of
modeling errors have another mapping characterization, which
means they are not described by identically independent Normal
distribution.

N
e’ = (e1,e,2,...e, M )+ w, %)
where f ( . ) is an unknown function and W, is white noise.

: Ny
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Real Modeling
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The two-phase model approximation could be expressed as
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and it’s overall modeling error is
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Without loss of generality, the k-phase system modeling could be
extended as followings.
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where
(12)

where N, (/; W N, ) denotes the mapping structure by the

phase-k neural network. / :r is the corresponding network’s

input vector and [/ . is the weight vector.
k

Equation (11) and (12) describe multi-phase model identification
using multiple neural networks. The input-ouput mapping
elements are obtained by computing previous modeling error
recursively as follows.

Ny

e - = erNH - étNM = 6"1/\/’(~1 - N, (U Wy, )

/i = (el 8% & )

Figure 1 represents the block diagram of multi-phase modeling
system. The phase-1 neural network is the real model of the only
existing real system, while the next-phase neural network (i.e., the
phase-2, the phase-3, .., and the k-phase neural network) are not
existing systems, which are synthetically generated.

Ny
-

A rtificial Modeling

(Figurel)
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2) Virtual System Generation

The problem of the multi-phase identification, considered in the
previous section, consists of iterative setting up a suitable neural
network model at each phase and also consist of a proper

. N, Ny
approximation of &, ' by the network output é, at each

phase / 6[1,/(].
subject to an

The approximation capability will be
relation between the
N

r-ny

implicit
N N N,
/= (e el el e

/

input
)and the desired

output Q,N”' . If any system identification model does not exist
between the input /,-’ and output e,N"‘ , multi-phase modeling
does not have any superior advantage to single-phase modeling.
The multi-phase modeling errors does not either guarantee that
they are smaller than the single-phase modeling error nor
guarantee that they are asymptotically stable with the white noise
property.

The main concern of this research is to improve the multi-phase
modeling accuracy by artificial constructing the mapping structure
using newly generated [-O variables. A compact deterministic
structure is employed as a basic model structure, and this structure
is modified by unifying artificial and real system variable. The
virtual compact mapping is used for absorbing the multi-phase
modeling errors. Consider following virtual mapping structure
and I-O variable.

2, =HX, Xy X, )

where X, is in the interval 0< X, <1 and is followed by the
given compact uniform distribution. The previous feed-forward

network, which is employed by Lapedes and Farber [1987], could
map the deterministic input-output functions effectively a

2= NHX, X e Xy W) where NH()is

t-n,-17
NE . .
the output of neural network and W™ is the corresponding

weight vector. The output errors, Z ; — £, tends to be very

small since the mapping structure could be characterized by a
compact deterministic function. Using this virtually well-
determined system, new system identification model will be
created for reducing the multi-phase modeling errors by
unification of the identified system model with each-phase
mapping system generated from multi-phase modeling procedure.

IV. Computer Simulation

In this section simulation results are given to verify the presented
idea.

Example: The process models to be considered are auto-
regressive models which are synthetically generated.

AR(2): X! =1.49X, - 0.653X , +¢
AR(3):X? = 2 146X, —1.598X%, +0.409X2, + &

AR(4):X? = 1.876X2, -1.781X%, —1.201 X2, +
0.373x7, + &

AR(5): X! =1.840X,—0.893X , —0.613X*, -0.879X", +
0.350X", +¢'

Where, €] ~N(0,1) for i=1,2,3,4.

Using the above stationary process model, a new process plant,
which has a similar process model in equation (1), is generated
for simulation.

Y =X X+ XX
f/z = ’ql(yr-w-"'yz—s"*et—w--'er-s'@/?])
+ V(A LA el el5.0,)

A=(4,....

followed by the given compact uniform distribution from Uf0, /]

1 . . . . L
,/1_5) is a collection of time series which is

forall i=1,2, k. H 1 and 1/1 are an neural network mapping. The

weight vectors in neural networks, ® m, and @V‘ were adjusted.

Table 1 represents modeling accuracy of the single-phase model,
which is described as real model, and multi-phase model as
described as artificial model.

V. Conclusion

In this paper multi-phase model identification is presented when a
process is not easily characterized either by one model nor by
collected variables. The collected variables could be decomposed
into other sub-signals which are not available for measurements
and correlated each others. Real and virtual modeling approach
are complementarily developed for increasing modeling accuracy.
Real modeling, which is interpreted as a coarse modeling, uses
real measurements for modeling an input-output system relation
and the proposing virtual modeling is also performed
continuously using the real modeling errors. In virtual modeling,
newly generated input signals, which are obtained summing the
real modeling error and artificially generated uniform series, are
utilized for characterizing mapping relation.

The complementarily relationship between real and virtual
modeling is connected to coarse and fine modeling approach. The
multi-phase modeling procedure offers a practical and effective
alternative that can be applied to very complicate non-stationary
and non-linear dynamic process specially when a process is not
easily "described by the collected measurements.
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