
1610 Hongseok et al.: An ICN In-Network Caching Policy for Butterfly Network in DCN

This research was funded by the MSIP (Ministry of Science, ICT & Future Planning), Korea in the ICT R&D

Program 2013.

http://dx.doi.org/10.3837/tiis.2013.07.005

An ICN In-Network Caching Policy for
Butterfly Network in DCN

Hongseok Jeon

1
, Byungjoon Lee

1
, Hoyoung Song

1
and Moonsoo Kang

2

1 Communications Internet Research Laboratory, Electronics and Telecommunications Research Institute

138 Gajengno, Yuseong-gu, Daejeon - KOREA

[e-mail: jeonhsg@etri.re.kr, bjlee@etri.re.kr, hsong@etri.re.kr]
2 School of Computer Engineering, Chosun University

Gawangju - KOREA

[e-mail: mskang@chosun.ac.kr]

*Corresponding author: Moonsoo Kang

Received December 17, 2012; revised March 18, 2013; accepted July 5, 2013; published July 30, 2013

Abstract

In-network caching is a key component of information-centric networking (ICN) for reducing

content download time, network traffic, and server workload. Data center network (DCN) is

an ideal candidate for applying the ICN design principles. In this paper, we have evaluated the

effectiveness of caching placement and replacement in DCN with butterfly-topology. We also

suggest a new cache placement policy based on the number of routing nodes (i.e., hop counts)

through which travels the content. With a probability inversely proportional to the hop counts,

the caching placement policy makes each routing node to cache content chunks. Simulation

results lead us to conclude (i) cache placement policy is more effective for cache performance

than cache replacement, (ii) the suggested cache placement policy has better caching

performance for butterfly-type DCNs than the traditional caching placement policies such as

ALWASYS and FIX(P), and (iii) high cache hit ratio does not always imply low average hop

counts.

Keywords: Information-centric networking, Data center network, In-network caching,

On-path caching

mailto:jeonhsg@etri.re.kr
mailto:bjlee@etri.re.kr

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013 1611

Copyright ⓒ 2013 KSII

1. Introduction

New paradigm of networking architecture called information centric networking (ICN) has

been extensively investigated in the context of DONA [1], CCN [2], PSIRP [3], and SAIL [4]

projects with a view to overcome the existing Internet limitations due to mass content

distribution [5]. Unlike currently used host-to-host addressing, these solutions are based on

named data object (NDO) that uniquely represent a piece of content such as a Web page, video

clip, document, and so on. In order to get content over ICN, users just request the content itself

by using its NDO; they don’t have to know where the content is actually located. It is the ICN

that automatically recognizes the request and forwards it to real location of the content.

A distinctive ICN feature is that content can be safely relocated as long as its integrity is

maintained. Thus, ICN greatly facilitates content replication over physical networks to

leverage in-network caching, so that any node storing the content can serve the request, not

just the original server. Effectively, in-network caching that stores the copy near to the client

helps reducing response time and network traffic among Internet service providers (ISPs).

Speaking of caching, it became a de facto standard to install a Web proxy server of the

content delivery network (CDN) at the gateway connecting users to the ISP. If the proxy

already has the requested content at hand, it immediately responds to the request. Generally,

Web proxying is comparable to ICN in-network caching. Proxy servers, however, cannot be

regarded as a part of layered network architecture since their maintenance explicitly involves

administration overheads.

In contrast, ICN in-network caches, referred to as on-path caches
1
, are the integral part of

the network – they keep popular contents with no need of additional administration.

Furthermore, on-path caching differs from the Web proxying in that each cache has a limited

amount of storage, typically RAM-based, where packets are stored. This may cause, however,

content fragmentation: content chunks can become scattered over a few neighboring caches.

Even in case of a single cache, an individual chunk can be replaced with the chunk from the

other content due to the limited amount of memory. In addition, a single chunk can be either

stored in a packet or divided into a series of packets, one or some of which can be lost in

transmission that further causes chunk fragmentation. Thus, ICN strongly recommends that a

single chunk were packed into an individual packet to reduce fragmentation as much as

possible.

Caching policy determining what to store and what to replace further contributes to the

effectiveness of the ICN on-path caches. The cache hit rate, i.e. how many requests can be

served, depends on the policy. Representative caching policies such as LRU and LFU have

been studied in the view of network traffic for general network topology. However, the

randomness of the requests from many users makes it difficult to determine which is the best

solution.

Recently, instead of trying to find the best caching policy for general ICN, researches on

caching policy for specific network topology are gaining more interest, since the regularity of

the network can greatly help improve caching performance. Particularly, data center networks

(DCN) are a major focus of attention because of big data [6]. Accordingly, this paper aims at

two goals. First, we have simulated conventional caching policies for DCN with butterfly

1
 The name refers the memories of the routers along the path from the client to the server that are used for

caching the content requested by the user.

1612 Hongseok et al.: An ICN In-Network Caching Policy for Butterfly Network in DCN

topology. Simulation results show the feasibility of one or other policy for DCN. Then, we

suggest a new caching policy based on hop counts to map content popularity to the regularity

of butterfly network that improves the hit rate of the cache. The idea is based on the fact that

the routing path in the butterfly network regularly follows tree topology. Thus, the closer the

node is to the root, the more users it serves. Accordingly, the closer to the root we put popular

content, the better will be the cache hit. The drawback of this approach, however, is that the

response time is increasing. Therefore, our hop count based caching is also designed to

consider the response time, not just simply putting popular content closer to the root. The

effectiveness of the hop count based caching with a view of hit or miss rate and response time

was extensively evaluated through repeated simulations.

This paper is organized as follows. In Section 2 we briefly discuss traditional caching

policies and their effectiveness for ICN. In Section 3 we present a hop count based caching

policy for butterfly network in DCN. Section 4 describes the simulation environments. Section

5 shows the performance evaluation of different caching policies in butterfly networks and

their comparison to the suggested method. Finally, Section 6 concludes the paper and outlines

future works.

2. Caching Policies

2.1 Cache Placement Policy

Cache placement means a decision of whether to store the newly arrived content chunks in the

cache memory. Originally, cache was introduced to support operating systems and databases.

For these applications, cache placement policy was not an important design factor in terms of

perfomance. However, when it comes to networks [7][8], cache placement policy becomes a

critical design factor.

The most straightforward cache placement policy is to place every incoming content

chunks into the cache memory. Hereinafter we refer this as ALWAYS policy. Many caching

methods use ALWAYS because of its simplicity. However, this approach impedes the

distribution of content chunks accross the network because popular content monopolizes the

limited available cache.

To reduce monopolization one can cache content chunks with a fixed probability. We refer

this as FIX (P). Here, routing nodes determine whether to cache the passing content chunks

based on fixed probability P whose value depends on network size and content popularity. In

general, the optimum value of P is acquired empirically.

Laoutaris [9] proposed a cache placement policy based on content popularity in

hierarchical networks where caches are located at different network levels such as regional,

national, and so on. WAVE [10] further generalized the popularity-based cache placement

policy regardless of specific network topology. In WAVE, upstream routing nodes explicitly

suggest what content chunks must be cached at the next downstream routing nodes.

Consequently, as the content becomes more popular, the copies of the corresponding content

chunks become closer to users.

Dong [11] has developed a mathematical model for optimized cache placement on the

assumption that the routing node knows what content chunks are actually cached at the

neighboring nodes. In [11], each routing node makes a decision as to cache in order to

minimize the average content retrieval latency subject to limited capacity of individual node

cache.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013 1613

Copyright ⓒ 2013 KSII

2.2 Cache Replacement Policy

Cache replacement refers to the decision of which cache entry should be removed from

memory in order to free space for new incoming content chunks when cache memory is full.

Most cache replacement policies take advantage of the locality of the reference. The least

recently used (LRU) and the least frequently used (LFU) policies are well-known examples.

LRU takes into account temporal locality which suggests that recently used content chunk is

likely to be reused soon. Accordingly, LRU removes content chunks based on how long they

had not been accessed. LFU further suggests that the probability of reuse increases with the

number of references. Over the years, many researches have been made to extend classical

policies [12]. However, there are little works on LRU and LFU in the context of on-path

caching.

Locality-based replacement policy essentially assumes the skewed popularity of contents,

and tries to keep popular content chunks resident in the cache. On the contrary, Rossi [13]

proposed a cache replacement policy, called BIAS, to cache diverse content. When the cache

becomes full, BIAS randomly selects two chunks and removes the more popular one.

Compared to general caching, on-path caching is different in that cached data can belong to

different original storages. Therefore, when cached content is not available, the distance

required to fetch the corresponding data from the original server can be different. The distance

travelled on the network immediately affects the cost of network traffic. For Web environment,

Peter [14] argued that a cache replacement algorithm should minimize the cost of missing

cache and proposed LNC-R-W3 delay-conscious cache replacement algorithm. Recently,

Wang [15] also proposed a cache replacement policy which takes the distance into account for

in-network caching.

While the aforementioned caching replacement policies use only historical information,

Famaey [16] showed that theoretically a prediction-based caching policy may be of great

advantage, provided good popularity prediction is possible.

3. Caching Policy for Butterfly DCN

DCN is considered as a good candidate to apply ICN concept for its unique features such as

server consolidation, workload distribution, and traffic offloading [6]. In server consolidation,

a few servers are grouped into a single virtual server to provide a specific service. If a

particular server becomes overloaded for some reason, its content or services are replicated to

its neighbors to reduce the workload. At the same time, traffic congestion among the servers

can also be a burden for the DCN. To reduce the east-west traffic in the DCN, data caching for

offloading the traffic is emphasized. Thus, in-network caching can be used on a systematic

base for self-contained DCN to cover load balancing and the cache proxying.

3.1 Butterfly Network

Thousands servers that form a DCN are usually organized in traditional 2N tree topology such

as VL2, PortLand, DCell, and BCube [17]. Even if the resulting topology looks like a mesh

rather than a tree (which can be the case to increase redundant connections,) the resulting mesh

still can be considered as multiple overlapping trees. For an example, a fat tree, popularly used

in a DCN, is constructed by more than two trees allowing multi-path routing on multiple

connections between parent and child nodes.

1614 Hongseok et al.: An ICN In-Network Caching Policy for Butterfly Network in DCN

Starting from the observation, we can approximate a butterfly network with a combination

of binary tree networks. Also, we believe a single binary tree is enough to analyze and evaluate

the effect of the existing caching polices, because the number of incoming connections onto a

node only affects the content request distribution. For example, three or four incoming

connections to a node, compared to two connections, will have different distribution of content

requests, but no different topological feature. Moreover, a caching policy on each node so

separately works with each other that the resulting performance will be driven depending on

the distributions, not on the number of connections.

01	
R64	

02	

03	
R65	

04	

R32	

61	
R94	

62	

63	
R95	

64	

R47	

R16	

R23	

R8	

R9	

R10	

R11	

R33	

R46	

R17	

R22	

R4	

R2	

R5	

65	

66	

67	

68	

125	

126	

127	

128	

R6	

R7	

R96	

R97	

R126	

R127	

R1	 R3	

Fig. 1. A buttefly network approximated with a perfect binary tree

3.2 Cache Placement Policy based on Hop Counting

In this paper we suggest a simple but efficient cache placement policy that takes the advantage

of the regularity of the binary tree whose subgraph
2
 is always another smaller binary tree. In

other words, any node in the tree will be a root node of a binary tree made of all its child nodes.

Because regularity at each location may inherently reflect the level of aggregation of content

requests, we are using location information, that is the number of hops from the server to the

router toward the client as a factor to stochastically select and cache more popular content

chunks.

Fig. 1 shows an example of how content popularity can be mapped to the regularity in a

binary tree. We assume that the root node (R1) is a content server and leaf nodes are clients

requesting the content stored on the server. Then, the routing protocol makes the internal

nodes from a leaf node to the root node intermediate routing nodes. From the properties of the

binary tree, the node at the level n has (tree depth − n) hops and 2
tree depth−n

 leaf nodes. For

example, in the case of binary tree with depth 7 as shown in Fig. 1, internal nodes with the hop

counts of 1 and 2 have 32 and 16 leaf nodes, respectively. Therefore, a node with a smaller hop

count can cover a larger number of users. Accordingly, the more users request the content, the

closer to the server should be the node where it is placed. This aggregation makes it possible to

2
 We use the term of ‘subgraph’ not referring to a part of graph but a smaller tree in the paper.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013 1615

Copyright ⓒ 2013 KSII

design a hop count based cache placement (HCCP) policy, by which each routing node

determines whether to cache the incoming content chunk with a probability of 1/(hop count).

Simply stated, as a router gets away from the server and the hop count increases, the caching

probability goes down. Alternatively, caching probability increases. To realize HCCP
3
 policy,

content chunks should include a reserved field for counting the number of hops from the

server.

Let’s see how HCCP works by way of example. When content request arrives at the server,

the server forwards the corresponding content chunks to the first router whose hop count is 1.

Thus, the probability to cache the chunks on the first router is 1.0, and the content is always

cached. If the cache is already full, one item will be removed using LRU or LFU algorithms.

Thus, at the first router, the HCCP works like ALWAYS. If content chunks are further

forwarded to the second router, the probability to cache them is halved to 0.5 because the

corresponding hop count is 2. Whether the chunks are cached or not will be determined by

fifty-fifty algorithm that is the same as FIX (0.5). As the chunks are forwarded to the next

routers, the procedure repeats. It differs from ALWAYS and FIX (P) in that HCCP caching

probability decreases as the chunks are as closely forwarded to the user.

We can characterize the HCCP caching behavior depending on the location of each router

as following. A node closer to the root will serve more users. More users will produce more

varied content requests, whereby the popularity of a specific content cannot be easily biased.

As the popularity of the specific content among the users becomes more random, lengthily

retaining an old chunk on the cache will not be beneficial. It is natural to replace the chunks on

the cache frequently with higher caching placement probability of a new chunk as HCCP

suggests.

On the contrary, a node farther away from the root has lower caching probability and

serves fewer users. Even though few users can trigger diversified content requests, the

common popularity of a specific content can be easily observed and it longer lasts than that of

more users. In this case, it makes sense to retain old chunks further. It is natural to replace the

chunks on the cache rarely with lower caching placement probability of a new chunk as HCCP

suggests.

4. Theoretical Analysis

Due to the statistical dynamics, it is very difficult to demonstrate HCCP advantages theoretically. But

we can show, however, why HCCP has better cache hit rate than ALWAYS. We consider an n-depth

perfect binary tree connected to a server as shown in Fig. 2 that is an example of the full binary with 8

users.

3
 The HCCP can be easily extended to the arbitrary m-ary tree because the topology cannot restrict the hop

counting.

1616 Hongseok et al.: An ICN In-Network Caching Policy for Butterfly Network in DCN

Fig. 2. A full binary tree with 8 users

Let’s assume the server has N content, labeled as Cs (S = {1, 2, 3, ..., N}) and each user Ui is requesting

the set of content, denoted as Ci (={C
i
1, C

i
2, ... C

i
m}), where Ci ⊂ Cs. The size of each set may be diffrent

and the element C
i
j of Ci is randomly selected from Cs. Probability of requesting C

i
j follows zipf

distribution. Let’s assume now that each router has its own sized cache. For simplicity, we assume that

all routers have the same cache size M. In our analysis, we consider only a situation of saturation where

the caches become full after some period of time which is long enough. We also assume HCCP and

ALWAYS use LRU as the cache replacement policy.

Theorem 1) the cache hit rate of a cache with the cachig probability p is bigger than that of the cache

with the caching probability q if p < q on a given content request distribuiton.

Proof) If the caching probabiliy is p then more than 1/p content requests are cached. If the cache has the

caching probability p, this will form a set of cached content CRi (= {C
Ri

1, C
Ri

2, … C
Ri

m}). If the cache has

caching probability q, this will form another set of cached content CRi
*
 (= {C

Ri
1
*
, C

Ri
2

*
, … C

Ri
m

*
}). It is

obvious that the number of requests for C
Ri

j to be cached is a geometric random variable representing

the number of trials until the first success and its expected value is 1/p. Thus the expected trials to form

CRi and CRi
*
 is m/p and m/q respectively. Then, for a given content request distribution,

,

where Pr(C
Ri

j) is the probability that the content C
Ri

j is requested under the given content distribution.

From the above inequality, the cache hit rate of the cache with cachig probability p is bigger than that of

the cache with caching probability q if p < q. ■

Intuitively, Theorem 1 means the following. If caching probability is 1, then all content requests are

immediately cached, which means unpopular content can replace popular content. However, if caching

probability gets lower, unpopular content is less likely to replace popular content. For example, if

caching probability is 1/4, more than 4 requests may let content cached while less than 4 requests may

not let the content cached.

At last, we can conclude that the HCCP cache hit rate is higher than that of ALWAYS from the

following inequality,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013 1617

Copyright ⓒ 2013 KSII

,

where CHR
HCCP

(Ri) and CHR
ALWAYS

(Ri) are the cach hit rate of the router Ri. The above inequality is

satisfied by Theorem 1 since HCCP caching probability is which is always lower than that

of ALWAYS.

5. Simulation Results

For simulation, we used NS2 (version 2.35) and a perfect binary tree for approximating the

DCN’s butterfly network with 127 internal nodes and 128 leaf nodes as shown in Fig 1.

Internal nodes play the role of routing nodes, and leaf nodes function as both content providers

and consumers. Thirty thousand content files were evenly distributed among content servers.

For better traceability of the simulation, we assume each content file has a size of 10Mbytes

and is divided into 1Kbyte chunks, whereby the degree of chunk distribution for content over

caches can be easily observed and analyzed. We also assume the size of chunk should be

smaller than the default MTU of the Ethernet interface
4
 to avoid a single chunk to be

transmitted in a few of packets, which may cause reassembling problems due to packet losses

during transmission. The cache size of each routing node is set to 1Mbyte emphasizing the

effect of the limited cache size.

To model a skewed popularity of content, we used a Zipf distribution [18] with various

values of Zipf rank exponent α. All content is ranked with Zipf distribution. According to

survey [13], small values of α (between 0.7 and 1) indicate a lightly loaded Web server and

α = 1.5 corresponds to a busy Web server. Large values of α (between 2 and 2.5) mean that

the given content gets higher popularity that can be easily observed in YouTube [19].

Nowadays, such extremely skewed popularity temporally happens due to social network effect.

Social networks enable content to become highly popular for very short time and some popular

sites can bring about great slashdot effect and flash crowd in a very short time [20]. Our

simulation runs until thousandth content request occurs. Table 1 summarizes simulation

parameters.

Table 1. Simulation parameters

Parameter Value

Chunk size 1 KB

Cache storage size 1 MB

Content size 10 MB

Content items 30,000

Number of routing nodes 127

Number of content servers / users 128

Zipf rank exponent (α) 0.7, 1, 1.5, 2, 2.5

4
 We also assume a DCN may have a higher or equal speed links to the Ethernet among its nodes. However the link

speed is not a matter, it is more important whether a single chunk can be packed into a single packet to avoid chunk

fragmentation.

1618 Hongseok et al.: An ICN In-Network Caching Policy for Butterfly Network in DCN

We evaluated the performance of in-network caching policies in terms of average hop

counts and cache hit ratio. The cache hit ratio estimates the average probability to find content

chunks on the routing nodes before getting down to the content servers. This metric indicates

the efficiency and load balancing effect of the in-network caching policy in DCN. The average

hop count estimates the average number of hops that content requests from users travel on the

network to obtain the requested content chunks. This metric can be used to quantify the

expected download time minimized by using the in-network caching.

Fig. 3 plots the cache hit ratio as a function of the Zipf parameter for different cache

placement policies: HCCP, FIX (P), and ALWAYS. In this simulation, P in FIX (P) is set to a

probability resulting in the best performance
5
. As can be seen, the cache hit ratio is nearly

two-times higher in both HCCP and FIX (P) than in ALWAYS (i.e., HCCP and FIX show

6.7 % and 6.3% higher cache hit ratios than ALWAYS at the 2.5 Zipf parameter, respectively).

This means that in-network caching using HCCP and FIX (P) reduces the content server

workload more than ALWAYS. This result is not surprising because ALWAYS policy caches

all content chunks aggressively. The cache hit ratio increases as the Zipf parameter increases.

Fig. 3. Cache hit ratio for different cache placement policies

Fig. 4 shows drops in average hop counts using HCCP and FIX (P), compared to

ALWAYS. As expected, HCCP and FIX (P) have the benefit of the less average hop counts,

and this benefit increases as the Zipf parameter increases. However, they do not show a

noticeable difference from ALWAYS in comparison with the cache hit ratio shown in Fig. 2.

(i.e., neither HCCP nor FIX (P) can decrease even 1 hop in the average hop count). We analyze

the cause of this in Fig. 5.

Fig. 4. Drops in average hop counts of HCCP and FIX (P) compared to ALWAYS

5 We conducted multiple simulations for FIX (P) as we increased the P by 0.1 and we have found that FIX (0.1)

shows best performance in α = 0.7, FIX (0.2) performs the best at α = 1 and 1.5, and FIX (0.3) causes the best

performance in α = 2 and 2.5.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013 1619

Copyright ⓒ 2013 KSII

Fig. 5 shows averages cache hit ratios in routing nodes using HCCP, FIX (0.3), and

ALWAYS when α is set to 2.5. The x-axis plots the index number of Ri of each router in Fig.

1. As shown in Fig. 5, HCCP and FIX (0.3) achieve a compelling cache hit ratio in the core and

intermediate routing nodes. HCCP show a slightly better performance than FIX (0.3) for these

routing nodes. At routing nodes 11 through 20, HCCP and FIX (0.3) show 11.7% and 10.2%

higher cache hit ratios than ALWAYS. However, the cache hit ratio of both HCCP and FIX

(0.3) decreases in the edge routing nodes, and HCCP exhibits a poorer performance than FIX

(0.3) and ALWAYS in some edge routing nodes. We think that because HCCP and FIX (P)

show intensively higher cache hit ratios than ALWAYS in the core and intermediate routing

nodes, they cannot provide a remarkable achievement in the average hop counts compared to

ALWAYS. In Fig. 3 through 5, LRU is used as a common cache replacement policy.

Fig. 5. Cache hit ratio of groups of adjacent routing nodes in α = 2.5

In Fig. 6, we explore the impact of four different cache replacement strategies (LRU, LFU,

LRU + network cost (NC)
6
, and LFU + NC) depending on different value of α. From Fig. 6,

one can see that LRU and LFU show no noticeable performance difference. LFU generally

outperforms LRU for static environments where popularity of data is consistently unchanged

over the time [12]. However, in our simulation results, the performance of LFU is quite similar

to that of LRU. We are reasoning any advantageous feature of LRU and LFU cannot be

dominantly exists since the node at a higher level in the tree may receive more requests from

more users and the dominant features like temporal reference or reference frequency are mixed

and amortized. We believe such indifference between LRU and LFU would be presented in

current Internet because the locality of reference becomes weakened as Web 2.0 comes a

multitude of short video clips and social networks are generating dynamic content popularity.

In Fig. 6, we can see LRU+NC also does not show appreciable difference between LRU and

LFU. LRU+NC has just a little impact on HCCP and FIX (P). We believe this is natural

because the network cost in LRU+NC is just an adding factor to the recency and thus does not

have a big impact on LRU. However, LRU + NC has an impact on the performance compared

to others. LFU+NC has a slightly negative impact on both HCCP and FIX (P) and a positive

impact on ALWAYS. This is because the network cost in LFU+NC is a multiplying factor to

the frequency and this results in somewhat big impact on LFU.

6 When caching replacement policy determines a target in the cache, a time cost to get the target from the source

server again should be accounted together unlikely to only considering how much frequently or recently used in

LRU and LFU [15].

1620 Hongseok et al.: An ICN In-Network Caching Policy for Butterfly Network in DCN

(a) α = 2.5

(b) α = 1.5

(c) α = 2.5

(d) α = 1.5

Fig. 6. Average hop count and cache hit ratio for different cache replacement policies

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013 1621

Copyright ⓒ 2013 KSII

5. Conclusion

This paper focuses on the impact of caching placement and replacement policies on the

performance of in-network caching for DCN butterfly networks. We analyzed the HCCP

behavior and theoretically compared it with ALWAYS. This explains why HCCP has better

cache hit rates than ALWAYS. We also performed various simulations to compare three cache

placement policies and four cache replacement policies. The results show that it is important to

choose the right cache placement policy for the in-network caching performance. In particular,

the proposed HCCP shows better performance than other cache placement policies at larger

Zipf parameters without significantly longer delay than the others. In addition, cache

replacement policies do not show noticeable performance difference. Remarkably, the results

show that the high cache hit ratio does not always imply low average hop counts. We have

observed FIX (P) and ALWAYS as well as HCCP are causing the phenomenon. Hence,

despite a high cache hit ratio, content consumers cannot receive a high level of QoE (i.e.,

reduced content download time). To lessen the average hop count, some interworking between

routing nodes might be required. In the future, we plan to further investigate such interworking

methods to considerably decrease the average hop counts. At the same time, we plan to

perform evaluations of HCCP on more general network topology with multiple routing paths,

not limited on a specific topology.

References

[1] T. Koponen, et al., “A Data-Oriented and Beyond Network Architecture,” in Proc. of Conference

SIGCOMM ‘07 ACM SIGCOMM 2007 Conference, pp. 181-192, August, 2007.

Article (CrossRef Link)

[2] V. Jacobson, et al., “Networking Named Content,” in Proc. of the 5th International Conference on

Emergin Networking Experiments and Technologies, pp. 1-12, December, 2009.

Article (CrossRef Link)

[3] A. Zahemszky, Csaszar Andras, P. Nikander and C.E. Rothenberg, “Exploring the Pub/Sub

Routing & Forwarding Space,” in Proc. of IEEE ICC Workshops 2009, pp. 1-6, June 14-18, 2009.

Article (CrossRef Link)

[4] Scalable and Adaptive Internet Solutions, http://www.sail-project.eu/

[5] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A Survey of

Information-Centric Networking,” IEEE Communications Magazine, vol.50, no.7, pp.26-36, July

2012.

Article (CrossRef Link)

[6] B. J. Ko, et al., “An Information-Centric Architecture for Data Center Networks,” in Proc. of 2nd

edition of the ICN Workshop on Information-Centric Networking, pp. 79-84, August 13-17, 2012.

Article (CrossRef Link)

[7] S. Bhattacharjee, K. L. Calvert and E. W. Zegura, “Self-Organizing Wide- Area Network Caches,”

in Proc. of IEEE INFOCOM ‘98, vol. 2, pp. 600-608, March 29 – April 2, 1998.

Article (CrossRef Link)

[8] X. Tang and S. T. Chanson, “Coordinated En-Route Web Caching, Journal.” IEEE Transactions

on Computers, vol. 51, no. 6, pp. 595-607, June, 2002.

Article (CrossRef Link)

[9] N. Laoutaris, S. Syntila and I. Stavrakakis, “Meta Algorithms for Hierarchical Web Caches,” in

Proc. of IEEE International Conference on Performance, Computing, and Communications, pp.

445-452, 2004.

Article (CrossRef Link)

[10] K. Cho, et al, “WAVE: Popularity-Based and Collaborative In-Network Caching for

Content-Oriented Networks,” in Proc. of 2012 IEEE Conference on Computer Communications

http://dx.doi.org/10.1145/1282380.1282402
http://dx.doi.org/10.1145/1658939.1658941
http://dx.doi.org/10.1109/ICCW.2009.5207980
http://www.sail-project.eu/
http://dx.doi.org/10.1109/MCOM.2012.6231276
http://dx.doi.org/10.1145/2342488.2342506
http://dx.doi.org/10.1109/INFCOM.1998.665080
http://dx.doi.org/10.1109/TC.2002.1009146
http://dx.doi.org/10.1109/PCCC.2004.1395054

1622 Hongseok et al.: An ICN In-Network Caching Policy for Butterfly Network in DCN

Workshop (INFOCOM Workshop), pp. 316-321, March 25-30, 2012.

Article (CrossRef Link)

[11] L. Dong, Dan Zhang, Y. Zhang and D. Raychaudhuri, “Optimal Caching with Content Broadcast

in Cache-and- Forward Networks,” in Proc. of 2011 IEEE International Conference on

Communications (ICC), PP 1-5, June 5-9, 2011.

Article (CrossRef Link)

[12] S. Podlipnig and L. Boszormenyi, “A Survey of Web Cache Replacement Strategies,” Journal

ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374-398, December, 2003.

Article (CrossRef Link)

[13] D. Rossi and G. Rossini, “Caching Performance of Content Centric Networks under Multi-Path

Routing (and More),” Technical report of Telecom ParisTech, 2011.

Article (CrossRef Link)

[14] P. Scheuermann, J. Shim, and R. Vingralek, “A case for delay- conscious caching of Web

documents,” Journal Computer Networks and ISND Systems, vol. 29, no 8-13, pp. 997-1005,

September, 1997.

Article (CrossRef Link)

[15] S. Wang, et al., “Could In-Network Caching Benefit Information-Centric Networking?,” in Proc.

of the 7th Asian Internet Engineering Conference, pp. 112-115, 2011.

Article (CrossRef Link)

[16] J. Famaey, T. Wauters, and F. D. TURCK, “On the Merits of Popularity Prediction in Multimedia

Content Caching,” in Proc. of 2011 IFIP/IEEE International Symposium on Integrated Network

Management (IM), pp. 17-24, May 23-27, 2011.

Article (CrossRef Link)

[17] B. Heller, et al., "ElasticTree: Saving Energy in Data Center Networks," in Proc. of the 7th

USENIX conference on Networked systems design and implementation (NSDI 2010), pp.17-17,

2010.

Article (CrossRef Link)

[18] L. A. Adamic and B. A. Huberman, “Zipf’s law and the Internet,” Journal Glottometris, vol. 3,

no.1, pp. 143-150, 2002.

Article (CrossRef Link)

[19] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn and S. Moon, “I tube, you tube, everybody tubes:

analyzing the worlds largest user generated content video system,” in Proc. of the 7th ACM

SIGCOMM Conference on Internet Measurement, pp. 1-14, 2007.

Article (CrossRef Link)

[20] C. Canali, M. Colajanni and R. Lancellotti, “Characteristics and Evolution of Content Popularity

and User Relations in Social Networks,” in Proc. of IEEE Symposium on Computers and

Communications (ISCC), pp. 750-756, June 22-25, 2010.

Article (CrossRef Link)

http://dx.doi.org/10.1109/INFCOMW.2012.6193512
http://dx.doi.org/10.1109/icc.2011.5963335
http://dx.doi.org/10.1145/954339.954341
http://perso.telecom-paristech.fr/~drossi/paper/rossi11ccn-techrep1.pdf
http://dx.doi.org/10.1016/S0169-7552(97)00032-9
http://dx.doi.org/10.1145/2089016.2089034
http://dx.doi.org/10.1109/INM.2011.5990669
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.3815
http://www.citeulike.org/user/sboisen/article/1008435
http://dx.doi.org/10.1145/1298306.1298309
http://dx.doi.org/10.1109/ISCC.2010.5546710

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013 1623

Copyright ⓒ 2013 KSII

Hongseok Jeon received the B.S degree in Industrial Engineering from Sung Kyun

Kwan University, Seoul, Korea, in 2002. He received the M.S. degree in Engineering

from Information and Communications University (ICU), Daejon, Korea, in 2004. He

joined Electronics and Telecommunications Research Institute (ETRI) in 2004.

Currently he is a Senior Engineer in the Smart Node Platform Research Section, Smart

Network Research Department, Communications Internet Research Laboratory,

ETRI. He is interested in the Information-Centric Networking (ICN) and Smart

Internet.

Byungjoon Lee received his B.S. and M.S. degrees in Computer Engineering from

Seoul National University in 1996 and 1998, and received Ph.D. degree in Computer

Engineering from Chungnam National University in 2011. He joined Electronics and

Telecommunications Research Institute (ETRI) in 2001, where he has served as a

software engineer. Currently he is a Senior Engineer in the Software Defined Network

Research Section, Future Internet Research Department, Communications Internet

Research Laboratory, ETRI. He is interested in the Future Internet Technologies,

including Information-Centric Networking (ICN), and Software-Defined Networking

(SDN).

Hoyoung Song is currently working as the director of Research Planning Team for

Communications & Internet in ETRI, Rep. of Korea. He received PhD. degrees in

information & communication engineering from Chungbuk National University in

Korea. He has been with ETRI since 1983. His recent research interests include

Information Centric Networking, Cloud networking, Software Defined Networking

and future internet technologies.

Moonsoo Kang received the B.S degree in Computer Science from Korea Advanced

Institute of Science and Technology (KAIST), Daejon, Korea, in 1998. He received

the M.S. and Ph.D. degrees in Engineering from Information and Communications

University (ICU), Daejon, Korea, in 2000 and in 2007 respectively, which is currently

a part of KAIST. Since 2007, He is an associate professor with the School of Computer

Engineering, Chosun University in Gwangju, Korea. His research interests are various

network protocols on ad hoc networks such as sensor, mesh and vehicular networks.

