• Title/Summary/Keyword: Pole Assignment Control

Search Result 102, Processing Time 0.026 seconds

Airplane mode decoupling using eigenstructure assignment via non-linear optimization (항공기 운동분리의 비선형 최적화를 이용한 고유공간지정법의 응용)

  • 이승재;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.920-925
    • /
    • 1993
  • For a multi-input, multi-output system, it is widely known that feedback control gain presents extra freedom pole placement problem. An eigenstructure assignment utilizes this freedom for assignment of all or some elements of the closed-loop eigenvectors. In this paper, a nonlinear optimization technique is adopted to obtain a small gain controller that assigns closed-loop eigenvalues and elements of eigenvectors simultaneously. To illustrate the approach, a numerical example of the Airplane mode decoupling using an advanced fighter is shown.

  • PDF

Performance Improvement in Single-Phase Electric Spring Control

  • Wang, Qingsong;Zuo, Wujian;Cheng, Ming;Deng, Fujin;Buja, Giuseppe
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.784-793
    • /
    • 2019
  • Two objectives can be pursued simultaneously with the ${\delta}$ control of a single-phase electric spring (ES). These objectives are the stabilization of the voltage across the critical load (CL) of a power system, and the achievement of a specific functionality similar to the pure compensation of reactive power or the correction of the power factor. However, existing control systems implementing the ${\delta}$ control do not cope with non-ideal operating conditions, such as line voltage distortions, and exhibit a somewhat sluggish regulation of the CL voltage. In an effort to improve both the steady-state and transient performances of an ES power system, this paper proposes implementing the ${\delta}$ control by means of a control system built up on the repetitive control and assisted by state feedback with pole assignment. This paper starts by analyzing the dynamics of an ES power system in terms of its poles and zeros. After that, a reduced second-order model of the dynamics is formulated to avoid a notch filter in the pole assignment. A repetitive control for an ES power system is then designed to meet the two above mentioned objectives. Experimental tests carried out on a laboratory setup demonstrate the effectiveness of the proposed control system in significantly improving the ES power system performance, while reaching the two objectives. In particular, the tests outline the large mitigation of harmonics in the CL voltage under line voltage distortions and its fast stabilization action.

A Design of PID controller in Two-Mass System Using Optimal Pole Assignment (최적 극배치를 이용한 2관성 공진계의 PID 제어기 설계)

  • Jeon, Don-Su;Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.815-817
    • /
    • 1999
  • In the two-mass system driving a load through a flexible shaft or transmission system, a shaft torsional vibration is often generated. In this case, it's difficult to control only by conventional PI controller. To solve this problem. the two-mass speed control system with PID controller is designed by using pole assignment method, and an optimum PID parameters are derived by evaluating ITAE(Integral of time multiplied by the absolute error) performance index. Simulation results show the validity of the proposed PID controller and this controller is compared with the conventional PID controller.

  • PDF

Robust Pole Assignment in a Specified Disk

  • Nguyen, Van-Giap;Nguyen, Tan-Tien;Lee, Gun-You;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.116-120
    • /
    • 2000
  • This paper presents a method to assign robustly the closed loop system's poles in a specified disk by a state feedback for a linear time invariant system with structured or unstructured uncertainties. THe proposed robust design procedure includes two steps. Firstly, the perturbed closed loop matrix $A_{cl p}$ = $A_{cl}$ + Δ$A_{cl}$ is rearranged such that it is a function of the nominal closed loop matrix $A_{cl}$. Hence, we can control the positions of the perturbed closed loop poles by choosing $A_{cl}$ appropriately. Secondly, the feedback control law F that assigns the closed loop poles of the perturbed system in a specified disk is determined from the equation $A_{cl}$ = A + BF. A procedure for finding F is proposed based on partitioning every matrix of the equation $A_{cl}$ = A + BF in the horizontal direction.

  • PDF

Direct assignment of the dynamics of a laboratorial model using an active bracing system

  • Moutinho, C.;Cunha, A.;Caetano, E.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.205-217
    • /
    • 2011
  • This article describes the research work involving the implementation of an Active Bracing System aimed at the modification of the initial dynamics of a laboratorial building structure to a new desired dynamics. By means of an adequate control force it is possible to assign an entirely new dynamics to a system by moving its natural frequencies and damping ratios to different values with the purpose of achieving a better overall structural response to external loads. In Civil Engineering applications, the most common procedures for controlling vibrations in structures include changing natural frequencies in order to avoid resonance phenomena and increasing the damping ratios of the critical vibration modes. In this study, the actual implementation of an active system is demonstrated, which is able to perform such modifications in a wide frequency range; to this end, a plane frame physical model with 4 degrees-of-freedom is used. The Active Bracing System developed is actuated by a linear motor controlled by an algorithm based on pole assignment strategy. The efficiency of this control system is verified experimentally by analyzing the control effect obtained with the modification of the initial dynamic parameters of the plane frame and observing the subsequent structural response.

Study on Digital Control of MZMO Dynamic Systems Using I/O Delay (입출력지연을 이용한 다중입출력계의 디지탈제어에 관한 연구)

  • 박양배;김영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.2
    • /
    • pp.63-71
    • /
    • 1985
  • The existing methods of pole assignment were reserved in this paper, a digital control method for MIMO dynamic systems was developed based on pole assignment using I/O delay. The underlined concept of the derived control law was that the poles corresponding to the order of a system can be assigned on the desired positions via output delay, and the poles of the order incrememted by output delay were forced to be placed on zero positions by way of input delay when applied to an actual MIMO system, the present scheme was shown to be more effective than the conventional state feedback scheme with observer in that the former was simpler than the latter, while they performed well.

  • PDF

Adaptive Control for Regulation of Blood Pressure in Physiological System (생체계 명사주절을 위한 적제제어)

  • 김영철;박용식;이상훈;민병구;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-523
    • /
    • 1987
  • Pole assignment adaptive controller has been suggested for automatic regulation of blood pressure by means of hypertinsive of hypotensive drugs. The relationship between the drug infusion rate and the blood pressure was described by an ARMA model. This adaptive algorithm does not reguire preliminary tests for the purpose of tuning the parameters, and have the capability to adjust automatically to changes in the curculatory state of subject. Experimental results on rabbits showed that stable control are occurred during operation. On the basis of theoretical considerations and experimental results, we expected that adaptive drug infusion system using pole assignment procedure might be effectively applied to the blood pressure control in clinical application.

Dynamic modeling and simulation of flexible robotic arms (유연한 로보트 팔의 동적 모델링과 시뮬레이션)

  • 김형옥;박세승;이정기;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.248-253
    • /
    • 1992
  • In the development of a high speed and light weight manipulator, it is necessary to consider the structural elasticity of a robotic arm. The analysis of the infinite mode dynamic of robotic arm must be performed to obtain the finite mode modelling to achieve the feasible controller design of the robotic arm. The modelling procedure of the robotic arm is also illustrated. The controlled mode of the modelled dynamic can be derived by truncating the higher vibrational mode to result in the low order system for the sampling in the control signal is confined to the higher mode. And it is controlled by the pole assignment which can compensate the unmodelled dynamic effects. The unmodelled dynamic can result in the instability of the controlled system, which is known as spillover. The controller design of the low order system is simulated by the pole assignment and optimal control theory.

  • PDF

Adaptive force regulation system in the milling process by current monitoring (전류감시를 이용한 밀링공정에서의 절삭력적응제어시스템)

  • 안동철;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.690-694
    • /
    • 1996
  • In order to regulate the cutting force at a desired level during peripheral end milling processes, a feedrate override Adaptive Control Constant system was developed. This paper presents an explicit pole-assignment PI-control law through spindle motor current monitoring and its application to cutting force regulation for feedrate optimization. An experimental set-up is constructed for the commercial CNC machining center without any major changes of the structure. A data transfer system is constructed with standard interface between an IBM compatible PC and a CNC of the machining center. Experimental results show the validity of the system.

  • PDF

Computer Aided Design of Multivariable Control Systems by Pole-Assignment Self-Tuning Regulators (극배치 자기-동조 안정기에 의한 다변수 제어계의 설계)

  • Shim, J.C.;Chun, S.Y.;Yim, W.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.76-78
    • /
    • 1987
  • This paper describes the theory and application of a multi-input/multi-output self-tuning regulator where the control objective is the assignment of the closed-loop pole set to prespecified locations. The algorithm described In this paper has a 'self-tuning' property. This self-tuners are more robust than the tuners that are based on optimal control synthesis method. This paper demonstrate usefulness of the algorithms by means of some simulation studies.

  • PDF