• Title/Summary/Keyword: Poisson process.

Search Result 484, Processing Time 0.02 seconds

Two model comparisons of software reliability analysis for Burr type XII distribution

  • An, Jeong-Hyang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.815-823
    • /
    • 2012
  • In this paper reliability growth model in which the operating time between successive failure is a continuous random variable is proposed. This model is for Burr type XII distribution with two parameters which is discussed in two versions: the order statistics and non-homogeneous Poisson process. The two software reliability measures are obtained. The performance for two versions of the suggested model is tested on real data set by U-plot and Y-plot using Kolmogorov distance.

Inhomogeneous Poisson Intensity Estimation via Information Projections onto Wavelet Subspaces

  • Kim, Woo-Chul;Koo, Ja-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.343-357
    • /
    • 2002
  • This paper proposes a method for producing smooth and positive estimates of the intensity function of an inhomogeneous Poisson process based on the shrinkage of wavelet coefficients of the observed counts. The information projection is used in conjunction with the level-dependent thresholds to yield smooth and positive estimates. This work is motivated by and demonstrated within the context of a problem involving gamma-ray burst data in astronomy. Simulation results are also presented in order to show the performance of the information projection estimators.

Ruin Probability in a Compound Poisson Risk Model with a Two-Step Premium Rule (이단계 보험요율의 복합 포아송 위험 모형의 파산 확률)

  • Song, Mi-Jung;Lee, Ji-Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.433-443
    • /
    • 2011
  • We consider a compound Poisson risk model in which the premiums may depend on the state of the surplus process. By using the overflow probability of the workload process in the corresponding M/G/1 queueing model, we obtain the probability that the ruin occurs before the surplus reaches a given large value in the risk model. We also examplify the ruin probability in case of exponential claims.

Comparative analysis of Bayesian and maximum likelihood estimators in change point problems with Poisson process

  • Kitabo, Cheru Atsmegiorgis;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.261-269
    • /
    • 2015
  • Nowadays the application of change point analysis has been indispensable in a wide range of areas such as quality control, finance, environmetrics, medicine, geographics, and engineering. Identification of times where process changes would help minimize the consequences that might happen afterwards. The main objective of this paper is to compare the change-point detection capabilities of Bayesian estimate and maximum likelihood estimate. We applied Bayesian and maximum likelihood techniques to formulate change points having a step change and multiple number of change points in a Poisson rate. After a signal from c-chart and Poisson cumulative sum control charts have been detected, Monte Carlo simulation has been applied to investigate the performance of Bayesian and maximum likelihood estimation. Change point detection capacities of Bayesian and maximum likelihood estimation techniques have been investigated through simulation. It has been found that the Bayesian estimates outperforms standard control charts well specially when there exists a small to medium size of step change. Moreover, it performs convincingly well in comparison with the maximum like-lihood estimator and remains good choice specially in confidence interval statistical inference.

A MULTI-SERVER RETRIAL QUEUEING MODEL WITH POISSON SIGNALS

  • CHAKRAVARTHY, SRINIVAS R.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.601-616
    • /
    • 2021
  • Retrial queueing models have been studied extensively in the literature. These have many practical applications, especially in service sectors. However, retrial queueing models have their own limitations. Typically, analyzing such models involve level-dependent quasi-birth-and-death processes, and hence some form of a truncation or an approximate method or simulation approach is needed to study in steady-state. Secondly, in general, the customers are not served on a first-come-first-served basis. The latter is the case when a new arrival may find a free server while prior arrivals are waiting in the retrial orbit due to the servers being busy during their arrivals. In this paper, we take a different approach to the study of multi-server retrial queues in which the signals are generated in such a way to provide a reasonably fair treatment to all the customers seeking service. Further, this approach makes the study to be level-independent quasi-birth-and-death process. This approach is different from any considered in the literature. Using matrix-analytic methods we analyze MAP/M/c-type retrial queueing models along with Poisson signals in steady-state. Illustrative numerical examples including a comparison with previously published retrial queues are presented and they show marked improvements in providing a quality of service to the customers.

Hybrid Blending for Video Composition (동영상 합성을 위한 혼합 블랜딩)

  • Kim, Jihong;Heo, Gyeongyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.231-237
    • /
    • 2020
  • In this paper, we provide an efficient hybrid video blending scheme to improve the naturalness of composite video in Poisson equation-based composite methods. In image blending process, various blending methods are used depending on the purpose of image composition. The hybrid blending method proposed in this paper has the characteristics that there is no seam in the composite video and the color distortion of the object is reduced by properly utilizing the advantages of Poisson blending and alpha blending. First, after blending the source object by the Poisson blending method, the color difference between the blended object and the original object is compared. If the color difference is equal to or greater than the threshold value, the object of source video is alpha blended and is added together with the Poisson blended object. Simulation results show that the proposed method has not only better naturalness than Poisson blending and alpha blending, but also requires a relatively small amount of computation.

Diagnosis of Lead Time Demand Based on the Characteristics of Negative Binomial Distribution (음이항분포의 특성을 이용한 조달기간 수요 분석)

  • Ahn Sun-Eung;Kim Woo-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.2
    • /
    • pp.146-151
    • /
    • 2005
  • Some distributions have been used for diagnosing the lead time demand distribution in inventory system. In this paper, we describe the negative binomial distribution as a suitable demand distribution for a specific retail inventory management application. We here assume that customer order sizes are described by the Poisson distribution with the random parameter following a gamma distribution. This implies in turn that the negative binomial distribution is obtained by mixing the mean of the Poisson distribution with a gamma distribution. The purpose of this paper is to give an interpretation of the negative binomial demand process by considering the sources of variability in the unknown Poisson parameter. Such variability comes from the unknown demand rate and the unknown lead time interval.

Approximate Analysis of a CONWIP system with Compound Poisson Demands (Compound Poisson 수요를 갖는 CONWIP 시스템의 근사적 분석)

  • 이정은;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.153-168
    • /
    • 1998
  • In this study we consider a CONWIP system in which the processing times at each station follow an exponential distribution and the demands for the finished Products arrive according to a compound Poisson process. The demands that are not satisfied instantaneously are assumed to be backordered. For this system we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of parts at each station, the proportion of backordered demands, the average number of backordered demands and the mean waiting time of a backordered demand. For the analysis of the proposed CONWIP system, we model the CONWIP system as a closed queueing network with a synchronization station and analyze the closed queueing network using a product form approximation method. A matrix geometric method is used to solve the subnetwork in the application of the product-form approximation method. To test the accuracy of the approximation method, the results obtained from the approximation method were compared with those obtained by simulation. Comparisons with simulation have shown that the approximate method provides fairly good results.

  • PDF

Diagnosis of Lead Time Demand Based on the Characteristics of Negative Binomial Distribution (음이항분포의 특성을 이용한 조달기간 수요 분석)

  • Ahn, Sun-Eung;Kim, Woo-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.79-84
    • /
    • 2005
  • Some distributions have been used for diagnosing the lead time demand distribution in inventory system. In this paper, we describe the negative binomial distribution as a suitable demand distribution for a specific retail inventory management application. We here assume that customer order sizes are described by the Poisson distribution with the random parameter following a gamma distribution. This implies in turn that the negative binomial distribution is obtained by mixing the mean of the Poisson distribution with a gamma distribution. The purpose of this paper is to give an interpretation of the negative binomial demand process by considering the sources of variability in the unknown Poisson parameter. Such variability comes from the unknown demand rate and the unknown lead time interval.

Analyzing landslide data using Cauchy cluster process (코시 군집 과정을 이용한 산사태 자료 분석)

  • Lee, Kise;Kim, Jeonghwan;Park, No-wook;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.345-354
    • /
    • 2016
  • Inhomogeneous Poisson process models are widely applied to landslide data to understand how environmental variables systematically influence the risk of landslides. However, those models cannot successfully explain the clustering phenomenon of landslide locations. In order to overcome this limitation, we propose to use a Cauchy cluster process model and show how it improves the goodness of fit to the landslide data in terms of K-function. In addition, a numerical study is performed to select the optimal estimation method for the Cauchy cluster process.