• Title/Summary/Keyword: Poisson′s Ratio

Search Result 434, Processing Time 0.03 seconds

Microstructures and Elastic Moduli of the Alloys Containing the Biocompatible Alloying Elements (생체 친화적인 원소를 함유한 티타늄합금의 미세조직과 탄성계수)

  • Jeong, Hui-Won;Kim, Seung-Eon;Hyeon, Yong-Taek;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.33
    • /
    • pp.157-165
    • /
    • 2003
  • New titanium alloys with a low elastic modulus have been developed for biomedical applications to avoid the stress shielding effect of the artificial prosthesis. The newly developed alloys contained the transition elements like Zr, Hf, Nb, Ta which were non-cytotoxicity elements and $\beta$ stabilizers. In the present paper the elastic moduli of Ti-xM containing Zr, Hf, Nb, Ta were evaluated by measuring the acoustic velocity (PEG). The effectiveness of the alloying elements for lowering the elastic modulus was investigated. In addition, the dominant factors for the low modulus were discussed. Ta was the most effective in lowering the elastic modulus of the alloys. The effectiveness of Hf was not acceptable for decreasing the elastic modulus. The dominant factor was the lattice parameter for Zr, and the poisson's ratio for Nb, Ta, respectively.

  • PDF

Throughput-based fair bandwidth allocation in OBS networks

  • Le, Van Hoa;Vo, Viet Minh Nhat;Le, Manh Thanh
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.624-633
    • /
    • 2018
  • Fair bandwidth allocation (FBA) has been studied in optical burst switching (OBS) networks, with the main idea being to map the max-min fairness in traditional IP networks to the fair-loss probability in OBS networks. This approach has proven to be fair in terms of the bandwidth allocation for differential connections, but the use of the ErlangB formula to calculate the theoretical loss probability has made this approach applicable only to Poisson flows. Furthermore, it is necessary to have a reasonable fairness measure to evaluate FBA models. This article proposes an approach involving throughput-based-FBA, called TFBA, and recommends a new fairness measure that is based on the ratio of the actual throughput to the allocated bandwidth. An analytical model for the performance of the output link with TFBA is also proposed.

Creep Strain of Containment Concrete Structure (원자로 격납건물 콘크리트의 크리이프 변형 특성)

  • 방기성;정원섭;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.95-100
    • /
    • 1996
  • Creep, drying shrinkage, modulus of elasiticity and Poisson's ratio of concrete are influenced by a number of factors such as mix type, member thickness, curing condition and loading cases. Particularly, creep and shrinkage in concrete have yet to be studied due to its complicated time-dependent properties. In this study, the concrete creep tests were carried out at varous ages of loading-7, 28, 90, 180 and 365 days in order to investigate and quantify its long-term properties. The test procedures and analysis of the test results were also described herein. The results of this study will enable A/E to calculate effective prestressing forces considering time-dependent prestressing loss and evaluate the structural integrity of the prestressing system using the representative values derived from this property test.

  • PDF

Analysis for Cracks of Functionally Gradient Materials by Photoelastic Experiment (광탄성실험에 의한 함수구배 재료 균열 해석)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.48-53
    • /
    • 2004
  • This paper suggested the method determing the stress intensity factor (SIF) for functionally gradient materials (FGMs) by photo elastic experimental method. The SIF for the center crack in a finite rectangulat plate with a linear variation of shear modulus with constant density and Poisson's ratio along the direction of the crack under mode I static loading is obtained. The exponential and linear variation of stress fields are used for obtaining the SIF. The greater crack length, the increaser the difference of the SIF between right and left side crack tip.

  • PDF

Numerical Prediction of Mechanical Properties of Composites (합성재료 물성치의 수치적 예측)

  • 신수봉;고현무
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.11-18
    • /
    • 1997
  • Mechanical properties of a composite mixed by components with known material properties are numerically predicted at various volume fractions rather than investigated through experiments. The properties, elastic modulus and Poisson's ratio, are estimated by minimizing the error between the static displacements computed from a model for the composite and those computed from a model of homogeneous and isotropic material. A finite element model for a composite is proposed to distribute different types of material components easily into the model depending on the volume fraction. Mechanical properties of a composite filled with solid mircospheres are predicted numerically through a sample study and the estimated results are compared with experimental results and some theories.

  • PDF

Prediction of Soil Deformation with Nonlinear-Anisotropic Model (비선형 이방성 모델을 이용한 흙의 변형 거동 예측)

  • 윤충구;정영훈;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.41-48
    • /
    • 2002
  • The fact that nonlinearity and anisotropy of soil should be considered for the proper estimation of soil deformation has been recongnized for a long time. In this study, a new stiffness model which can reflect both nonlinearity and anisotropy is proposed. Nonlinearity is simulated by Ramberg-Osgood model and anisotropy is modeled with the cross-anisotropic elasticity. Analysis results with the developed model compared with those from analyses using linear isotropic model, linear anisotropic model, and nonlinear isotropic model. In the triaxial compression like condition, the effects of nonlinearity on the vertical strain are significant, but soil anisotropy does not affect the vertical strain. In 1-dimensional deformation condition, however, both nonlinearity and anisotropy of soil influence the final magnitude of the vertical strain. Also the increase of poisson's ratio magnifies the effect of anisotropy on the vertical strain in this condition.

  • PDF

Study on equivalent material property of Tetra Chiral Honeycomb structure using finite element method (유한 요소 해석을 이용한 Tetra Chiral Honeycomb 구조의 등가 물성치에 대한 연구)

  • Park, Jung-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.190-194
    • /
    • 2016
  • 자연에서 안정적이고 경제성이 높은 구조로 벌집 구조가 많이 언급이 된다. 이러한 벌집 구조의 특징으로 인해 많은 공학자들이 그 구조를 모방하여 적용하고 있다. 벌집 구조에도 다양한 종류가 존재하지만 그 중 음의 푸아송 비(Poisson's ratio)를 갖는 Chiral Honeycomb 구조가 많이 연구되고 있다. 푸아송 비는 물질이나 구조의 고유한 물성치로 종, 횡 방향의 변형율로 나타내며 이 값으로 외부 조건으로부터의 변형을 예측 할 수 있게 된다. 흔히 푸아송 비는 양의 값을 가지지만 Chiral Honeycomb 구조는 음의 푸아송 비를 가져 기존의 구조와는 다른 기계적 성질을 가지게 된다. 이 논문에서는 Chiral Honeycomb 구조 중에서도 4개의 관절(ligament)를 가지는 Tetra Chiral Honeycomb 구조에 대해 EDISON용 CASADsovler 프로그램을 통해 유한 요소 해석을 수행하여 등가 물성치를 구해 보았으며 기존 실험의 값들과 비교를 통해 해석을 위해 필요한 적절한 대표 체적에 대해 확인해 보았다.

  • PDF

A Study on the Design of the Warper Beam Considering Friction (마찰을 고려한 경편기용 정경빔의 설계에 관한 연구)

  • 임문혁;김영규;신현명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.140-148
    • /
    • 2003
  • An analysis fur the warping process has been performed to design the warper beam. Nonlinear material response is included in the physical model of polyester yarn. Large deformation finite element simulation considering contact and frictional analysis are used to obtain the pressure on the barrel of the warper beam. Loading condition on the flange is assumed by using the pressure on the barrel, winding number of yarn, Poisson's ratio of fiber, and fiber volume fraction. By using the above loading conditions NASTRAN finite element simulation is performed to calculate stress distribution and deformation of the warper beam. By comparing the deformed shape of the flange with experimental result, loading condition on the flange has been obtained. The obtained loading conditions on the barrel and flange can be utilized to design the warper beam.

Study on the Thermo-Mechanical Behaviors of Fiber Metal Laminates Using the Classical Lamination Theory (고전적층이론을 이용한 섬유금속적층판의 열 . 거동 연구)

  • Choi, Heung-Soap;Roh, Hee-Seok;Kang, Gil-Ho;Ha, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.394-401
    • /
    • 2004
  • In this study the mechanical behaviors of fiber metal laminates(FMLs) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also, carpet plots of effective elastic moduli, Poisson's ratio and the thermal expansion coefficient for GLARE FML are plotted.

The uniaxial strain test - a simple method for the characterization of porous materials

  • Fiedler, T.;Ochsner, A.;Gracio, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.17-32
    • /
    • 2006
  • The application of cellular materials in load-carrying and security-relevant structures requires the exact prediction of their mechanical behavior, which necessitates the development of robust simulation models and techniques based on appropriate experimental procedures. The determination of the yield surface requires experiments under multi-axial stress states because the yield behavior is sensitive to the hydrostatic stress and simple uniaxial tests aim only to determine one single point of the yield surface. Therefore, an experimental technique based on a uniaxial strain test for the description of the influence of the hydrostatic stress on the yield condition in the elastic-plastic transition zone at small strains is proposed and numerically investigated. Furthermore, this experimental technique enables the determination of a second elastic constant, e.g., Poisson's ratio.