• Title/Summary/Keyword: Poisson′s Ratio

Search Result 441, Processing Time 0.022 seconds

Measurement of Biomechanical Property of Chondrocyte (연골세포의 기계적 물성치 측정)

  • ;Daehwan Shin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.154-157
    • /
    • 2002
  • A cyto-indentation technique was used to obtain the biomechanical compressive compliance property of an chondrocyte cell attached to glass surface, which was tried to generate joint cartilage by tissue engineering. Piezo-transducer system and dual photo-diode system were used to conduct mechanical indentation through displacement-controlled testing and the measurement of corresponding cell reaction force. The Poisson's ratio of 0.37 was quoted from other report. The compressive compliance of chondrocyte, that was determined by elastic contact theory, was 1.38${\pm}$0.057 kPa. This value is 30% higher than that of MG63 osteoblast-like cell. The cyto-indentation technique employed in this study is so precise that it can quantify the biomechanical property of single cell.

  • PDF

Resonance Test for Dynamic Physical Properties of Concrete with Recycling Materials (공명진동시험을 통한 재활용재 혼입 콘크리트의 동적 물성치 측정)

  • 박용구;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.111-116
    • /
    • 1998
  • Most previous wave tests for concrete have been done to evaluate static material properties, and thus there are less works to investigate dynamic material characteristics of concrete, which should be few in Korea. The objective of this experimental work is to investigate dynamic material characteristics of concrete, such as dynamic elastic modulus, dynamic shear modulus, first resonant frequency, dynamic poisson's ratio and etc. A dynamic Signal Analyzer has been used to perform the wave analysis for various dynamic material properties of test specimen. First Fourier transform technique has been carried out on various wave data acquired by the Resonant Column method, which is a kind of nondestructive tests. Wave analysis has been performed based on KS F2437, which is similar to ASTM C607-71 and is identical to JIS A 1127-1976.

  • PDF

Fundamental Tests for General Use of High-Strength Lightweight Concrete (고강도 경량콘크리트의 실용화를 위한 기초적 실험연구)

  • 김형태;김원근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.39-44
    • /
    • 1990
  • This experimental study is performed by using artificial lightweight aggregate manufactured in laboratory, and the test results of it are compared with those using foreign materials in respect of design compressive strength, unit weight. The tests on strength characteristics such as bending, splitting tensile strength and on mechanical characteristics including σ-εcurve, elastic modulus, poisson's ratio are performed to provide the fundamental data required for the design. From this study, it is possible to obtain the high-strength concrete having compressive strength of 500 kg/㎠ and unit weight of 1.85-2.0 t/㎥. And also it is recommended that sandlightweight concrete having high specfic strength is more practical for general use.

  • PDF

Stress Intensity Factor for Multi-Layered Material Under Polynomial Anti-Symmetric Loading (멱급수 반대칭하중을 받는 다층재 중앙균열의 응력세기계수)

  • 이강용;김성호;박문복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3219-3226
    • /
    • 1994
  • A model is constructed to evaluate the stress intensity factors for a center crack subjected to polynomial anti-symmetric loading in a layered material. A Fredholm integral equation is derived by Fourier integral transform method. The integral equation is numerically analyzed to evaluate the effects of the ratios of shear modulus, Poisson's ratio and crack length to layer thickness as well as the number of layers on the stress intensity factor. The stress intensity factors are approached to constant values as the number of layers increase and decrease as the polynomial power of the loading increase. In case of the E-glass/Epoxy composite, dimensionless stress intensity factor is affected by cracked-resin layer thickness.

Displacements and stresses in pressurized thick FGM cylinders with exponentially varying properties based on FSDT

  • Ghannad, Mehdi;Gharooni, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.939-953
    • /
    • 2014
  • Using the infinitesimal theory of elasticity and analytical formulation based on the first-order shear deformation theory (FSDT) is presented for axisymmetric thick-walled cylinders made of functionally graded materials under internal and/or external uniform pressure. The material is assumed to be isotropic heterogeneous with constant Poisson's ratio and radially exponentially varying elastic modulus. At first, general governing equations of the FGM thick cylinders are derived by assumptions of the FSDT. Then the obtained equations are solved under the generalized clamped-clamped conditions. The results are compared with the findings of both FSDT and finite element method (FEM).

Three dimensional finite elements modeling of FGM plate bending using UMAT

  • Messaoudi, Khalid;Boukhalfa, Abdelkrim;Beldjelili, Youcef
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.487-494
    • /
    • 2018
  • The purpose of the present paper is to study the bending and free vibration of Functionally Graded Material (FGM) plate using user-defined material subroutine on the finite element software ABAQUS. The FGM plate is simply supported and subjected to sinusoidal and uniform load. The Poisson's ratio is kept constant. The results obtained compared to those available in the literature show the convergence, the exactitude and the efficiency of the method used with various power index of the materials.

Soil-Tunnel Interaction and Isolation Effect during Earthquakes (지진시 지반-터널 상호작용 및 면진 효과)

  • 김대상
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.120-127
    • /
    • 2001
  • Long term earthquake observations at different tunnel sites within a variety of alluvial soil deposits have demonstrated that a circular tunnel is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately. Based on this knowledge, the soil-tunnel interaction and isolation effect for this particular vibration mode is investigated. Interaction effect is considered with the condition of fixed tangential strain between the tunnel and the soil. Isolation effect embodied by covering up the tunnel with isolation materials is discussed as a possible measure for mitigating seismic damage to it. When Poisson`s ratio of isolation material decreases or the shear modulus ratios of the soil to isolation material become large, the isolation effect becomes bigger.

  • PDF

Stochastic Finite Element Analysis for Rock Caverns Considering the Effect of Discontinuities (불연속면의 영향을 고려한 암반동굴의 확률유한요소해석)

  • 최규섭;황신일;이경진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.95-102
    • /
    • 1996
  • In this study, a stochastic finite element model is proposed with a view to consider the uncertainty of physical properties of discontinuous rock mass in the analysis of structural behavior on underground caverns. In so doing, the LHS(Latin Hypercube sampling) technique has been applied to make up weak points of the Crude Monte Carlo technique. Concerning the effect of discontinuities, a joint finite element model is used that is known to be superior in explaining faults, cleavage, things of that nature. To reflect the uncertainty of material properties, the variables such as the the elastic modulus, the poisson's ratio, the joint shear stiffness, and the joint normal stiffness have been used, all of which can be applicable through normal distribution, log-normal distribution, and rectangulary uniform distribution. The validity of the newly developed computer program has been confirmed in terms of verification examples. And, the applicability of the program has been tested in terms of the analysis of the circular cavern in discontinuous rock mass.

  • PDF

Stress Intensity Factor for Layered Material Under Anti-Symmetric Loading (반대칭하중을 받는 적층재 중앙균열의 응력세기계수)

  • 이강용;박문복;김성호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1382-1387
    • /
    • 1994
  • A model is constructed to evaluate the stress intensity factors for a center crack subjected to anti-symmetric loading in a layered material. A Fredholm integral equation is derived using the Fourier integral transform method. The integral equation is numerically analyzed to evaluate the effects of stress intensity factor on the shear modulus, Poisson's ratio and crack length to layer thickness. In case of the isotropic homogeneous material, the values of stress intensity factor derived in the present study agree with the previous solutions.

Material Characterization of Lock Plate Using Guided Wave (유도 초음파를 이용한 락 플레이트 물성 평가)

  • Lee, Jae-Sun;Cho, Youn-Ho;Jeong, Kyoung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.373-379
    • /
    • 2009
  • Presented in this paper is a new experimental technique to measure material properties of lock plate of gas turbine plants by using ultrasonic guided wave. In comparison with the mechanical destructive testings, material characterization of the Inconel x-750 was nondestructively carried out in a more efficient manner to discriminate the change in elastic moduli and the poisson's ratio attributed to the variation of heat treatment condition. The proposed technique shows a satisfactory feasibility via the comparative experiments with the imported lock plate specimens. It is also expected that the guided wave technique can cover a longer and wider range as a new cost-&-time-saving inspection tool due to the interaction with a greater part of specimen, compared to a conventional local point-by-point scheme.