• 제목/요약/키워드: Point transversal

검색결과 23건 처리시간 0.03초

CMA 알고리즘을 이용한 고속 DFE 등화기 설계 (Design of a High-speed Decision Feedback Equalizer using the Constant-Modulus Algorithm)

  • 전영섭;선우명훈;김경호
    • 대한전자공학회논문지TC
    • /
    • 제39권4호
    • /
    • pp.173-179
    • /
    • 2002
  • 본 논문은 DFE (Decision Feedback Equalizer)구조와 CMA (Constant Modulus Algorithm), 그리고 LMS (Least Mean Square) 알고리즘을 이용한 등화기에 대하여 기술한다. DFE 구조는 기존의 transversal 구조의 등화기에 비하여 빠른 채널 적응 속도와 낮은 BER (Bit Error Rate) 값을 가지며 ISI(Intersymbol Interference)가 심한 환경에서도 좋은 성능을 나타낸다. 본 등화기는 16/64 QAM(Quadrature Amplitude Modulation) 변복조 방식에 적용할 수 있으며, 고속으로 동작할 수 있도록 고속의 곱셈기와 많은 수의 CSA (Carry Save Adder)를 사용하였다. COSSAP/sup TM/ 캐드 툴을 사용하여 부동 소수점 모델과 고정 소수점 모델을 개발하였으며, VHDL 모델을 개발하였다. 시뮬레이션 결과에 따라 feedback 부분과 feedforward 부분에 각각 12개와 8개의 탭을 사용하였으며, 다중 경로 페이딩 채널에서 BER이 10-6일 때를 기준으로 보면 등화기를 사용하지 않은 채널의 BER 보다 SNR(Signal to Noise Ratio)이 4dB 정도 향상되었다. SYNOPSYS/sup TM/ 캐드 툴과 삼성의 0.5 ㎛ standard cell library (STD80) 를 이용하여 로직 합성을 수행하였으며, 전체 게이트 카운트는 약 13만개를 보였다.

트랜스미디어에 대한 개념적 고찰 (A Conceptual Study on Transmedia)

  • 윤혜영
    • 한국콘텐츠학회논문지
    • /
    • 제19권11호
    • /
    • pp.644-652
    • /
    • 2019
  • 본 연구는 트랜스미디어라는 개념을 둘러싸고 난립해있는 용어의 문제를 인식하고, 언어기호학의 통합체 이론을 적용하여 개념에 대한 정리와 고찰을 시도하였다. 트랜스미디어에서 접두사 '트랜스'는 횡단과 변형, 초월을 의미한다. 트랜스미디어라는 단어 자체의 이와 같은 다의성은 트랜스미디어 개념을 횡단과 변형, 초월이라는 동사적 계열을 가진 미완의 통합체로 인식할 수 있는 단초를 제공한다. 미디어 기업, 창작자, 사용자처럼 미디어 콘텐츠 분야의 주체이자 주어가 누구냐에 따라 트랜스미디어 개념의 통합체는 트랜스미디어 프랜차이즈, 트랜스미디어 스토리텔링, 프로슈머와 같은 용어와 연결된다. 세 주체가 트랜스미디어의 담화에 참여하는 목적은 IP 활용과 스토리 세계의 확장, 작품 향유로 각각 다르다. 하지만 세 주체가 미디어를 횡단하고 변형하며 초월하는 목적에서 '반복'과 '연장', '확보'와 '연결'이라는 공통의 욕망이 발견된다. 트랜스미디어 프랜차이즈, 트랜스미디어 스토리텔링, 프로슈머와 같은 용어가 트랜스미디어 개념의 '파롤'이라면, 반복과 연장, 확보와 연결은 트랜스미디어 개념의 '랑그'이다.

고주파 래틀링 소음의 기초 연구 (A Basic Study of High Frequency Rattling Noise)

  • 이금정;박철희;주재만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.88-93
    • /
    • 1998
  • Since rattling noise, which occur in mechanical linkage with free play or glove boxes in passenger cars, play an important role in the generation of industrial noise and vibration, it is interest to study these dynamics. A difference equations are derived which described the motions of a mass constrained by pre-compressed spring and forced by a high frequency base excitation. Two types of saddle are founded from these difference equations and the stable and unstable manifolds are constructed in these saddle point. For a certain region in a parameter space of exciting displacement and coefficient of restitution, transversal intersections of stable and unstable manifolds exist. Therefore it is founded that there are large families of periodic and irregular non-periodic motions in rattling system i.e. chaos motion is observed.

  • PDF

Geometrically nonlinear analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.27-36
    • /
    • 2018
  • The objective of this work is to analyze geometrically nonlinear static analysis a simply supported laminated composite beam subjected to a non-follower transversal point load at the midpoint of the beam. In the nonlinear model of the laminated beam, total Lagrangian finite element model of is used in conjunction with the Timoshenko beam theory. The considered non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. In the numerical results, the effects of the fiber orientation angles and the stacking sequence of laminates on the nonlinear deflections and stresses of the composite laminated beam are examined and discussed. Convergence study is performed. Also, the difference between the geometrically linear and nonlinear analysis of laminated beam is investigated in detail.

Bending of a cracked functionally graded nanobeam

  • Akbas, Seref Doguscan
    • Advances in nano research
    • /
    • 제6권3호
    • /
    • pp.219-242
    • /
    • 2018
  • In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

RECTIFICATION OF PURE TRANSLATION 2D CAMERA ARRAY

  • Ota, Makoto;Fukushima, Norishige;Yendo, Tomohiro;Tanimoto, Masayuki;Fujii, Toshiaki
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.659-663
    • /
    • 2009
  • In this paper, we propose a rectification method that can convert ray space data obtained by controlled camera array to ideal data. Here, Ideal data is obtained by getting longitudinal and transversal epipolar line between cameras vertical and horizontal. However it is actually difficult to arrange cameras strictly because we arrange cameras by hand. As conventional method, we have use camera-calibration method. But if we use this method there are some errors on the output image. When we generate arbitrary viewpoint images this error is critical problem. We focus attention on ideal trajectory of characteristic point. And to minimize the error directly we parallelize the real one. And we showed usefulness of proposed technique. Then using the proposed technique, we were successful reducing the error to less than 0.5 pixels.

  • PDF

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.

A NOTE ON SPECTRAL CHARACTERIZATIONS OF COSYMPLECTIC FOLIATIONS

  • Park, Jin-Suk;Cho, Kwan-Ho;Sohn, Won-Ho;Lee, Jae-Don
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.917-926
    • /
    • 1994
  • Let ($M, G_M, F$) be a (p+q)-dimensional Riemannian manifold with a foliation F of codimension q and a bundle-like metric $g_M$ with respect to F ([9]). Aside from the Laplacian $\bigtriangleup_g$ associated to the metric g, there is another differnetial operator, the Jacobi operator $J_D$, which is a second order elliptic operator acting on sections of the normal bundle. Its spectrum isdiscrete as a consequence of the compactness of M. The study of the spectrum of $\bigtriangleup_g$ acting on functions or forms has attracted a lot of attention. In this point of view, the present authors [7] have studied the spectrum of the Laplacian and the curvature of a compact orientable cosymplectic manifold. On the other hand, S. Nishikawa, Ph. Tondeur and L. Vanhecke [6] studied the spectral geometry for Riemannian foliations. The purpose of the present paper is to study the relation between two spectra and the transversal geometry of cosymplectic foliations. We shall be in $C^\infty$-category. Manifolds are assumed to be connected.

  • PDF

A New Cryptographic Algorithm for Safe Route Transversal of Data in Smart Cities using Rubik Cube

  • Chhabra, Arpit;Singhal, Niraj;Bansal, Manav;Rizvi, Syed Vilayat
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.113-122
    • /
    • 2022
  • At the point when it is check out ourselves, it might track down various information in each turn or part of our lives. Truth be told, information is the new main thrust of our advanced civilization and in this every day, "information-driven" world, security is the significant angle to consider to guarantee dependability and accessibility of our organization frameworks. This paper includes a new cryptographic algorithm for safe route traversal for data of smart cities which is a contemporary, non-hash, non-straight, 3D encryption execution intended for having information securely scrambled in the interim having a subsequent theoretical layer of safety over it. Encryption generally takes an information string and creates encryption keys, which is the way to unscramble as well. In the interim in another strategy, on the off chance that one can sort out the encryption key, there are opportunities to unravel the information scrambled inside the information string. Be that as it may, in this encryption framework, the work over an encryption key (which is created naturally, henceforth no pre-assurance or uncertainty) just as the calculation produces a "state" in a way where characters are directed into the Rubik block design to disregard the information organization.

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.