This paper aims to review methods for computing orthogonal projection of points onto curves and surfaces, which are given in implicit or parametric form or as point clouds. Special emphasis is place on orthogonal projection onto conics along with reviews on orthogonal projection of points onto curves and surfaces in implicit and parametric form. Except for conics, computation methods are classified into two groups based on the core approaches: iterative and subdivision based. An extension of orthogonal projection of points to orthogonal projection of curves onto surfaces is briefly explored. Next, the discussion continues toward orthogonal projection of points onto point clouds, which spawns a different branch of algorithms in the context of orthogonal projection. The paper concludes with comments on guidance for an appropriate choice of methods for various applications.
In this paper, orthogonal projection of a point onto a 2D planar curve is discussed. The problem is formulated as finding a point on a curve where the tangent of the curve is perpendicular to the vector connecting the point on the curve and a point in the space. Existing methods are compared and novel approaches to solve the problem are presented. The proposed methods are tested with examples.
Communications for Statistical Applications and Methods
/
제31권4호
/
pp.377-391
/
2024
Accurate household projections are essential for sectors such as housing supply and tax policy planning, given the rapid social changes like declining birthrates, an aging population, and a rise in single-person households that impact household size and type. Korea introduced its first register-based census in 2015, transitioning from five-year general survey-based approach to an annual administrative data-based census. This change in census allows for more frequent and effective capturing the rapid demographic shifts and trends. However, this change in census has caused challenges in future projection by the existing household projection model due to the rapid dynamics. This paper proposes a new household projection method, the N-point Modified Exponential Model (MEM), that accurately reflects register-based census data and mitigates the impact of rapid demographic changes, in three types: the Weighted N-point MEM, the Regression-based N-point MEM, and the Rolling Weighted N+point MEM. Using register-based census data from 2016 to 2020 to forecast household headship rates by age, household size, and household type to 2051, the N-point modified exponential model outperformed the existing model in both long- and short-term forecast accuracy, suggesting its suitability as a future household projection model for Korea.
In this paper, we define a generalized duality mapping, which is a generalization of the normalized duality mapping and using this, we extend the notion of a generalized projection and study their properties. Also we construct an approximating fixed point sequence using the generalized projection with the generalized duality mapping and prove its strong convergence.
We present a new algorithm for solving a system of nonlinear equations with convex constraints which combines proximal point and projection methodologies. Compared with the existing projection methods for solving the problem, we use a different system of linear equations to obtain the proximal point; and moreover, at the step of getting next iterate, our projection way and projection region are also different. Based on the Armijo-type line search procedure, a new hyperplane is introduced. Using the separate property of hyperplane, the new algorithm is proved to be globally convergent under much weaker assumptions than monotone or more generally pseudomonotone. We study the convergence rate of the iterative sequence under very mild error bound conditions.
In this paper, we introduce and studied a system of nonlinear projection equations with perturbation in Hilbert spaces. By using the fixed point theorem, we prove an existence of solution for this system of nonlinear projection equations. We construct an algorithm for approximating the solution of the system of nonlinear projection equations with perturbation and show that the iterative sequence generated by the algorithm converges to the solution of the system of nonlinear projection equations with perturbation under some suitable conditions.
The quantitative analysis of view tells how surroundings and sky are showed, and requires understanding of visual perception and three dimensional information of buildings. The visual perception and the existing projection methods for view analysis are examined. The results of this study are as follows: The visual perception on the size is determined by the visual angle, which can be described as a solid angle. The analysis of view by planar projection can be narrow-sighted according to the size of the window and the location of the viewpoint, which will cause the obstacles in the normal direction of the window interfere the view. For the analysis of view by fisheye projection, the area around the focus point is calculated wider than other areas, and so the view ratio depends on the position of the focus point. When analyzing sky view by dividing the sky vault into the differential area, the distortion by projection can be minimized.
소모적이고 안전사고에 노출된 실탄 사격을 대체할 수 있는 사격 시뮬레이션 시스템과 관련된 연구가 활발히 진행되고 있다. 본 논문에서는 기존의 센서 기반 기술을 이용한 인식 방법을 사용하지 않고 영상처리기반 기술을 이용하여 탄착점을 추출하는 과정을 제시하였다. 이를 위해 모의총기의 총구에 부착된 카메라로부터 획득한 영상 분석을 통해 탄착점 위치를 찾아내고, 그 탄착점의 좌표 값과 과녁과의 매핑을 통한 최종 사격결과를 계산하여 제공할 수 있도록 한다. 이 시스템은 전송된 영상에서 영사영역을 구분하는 단계, 영사영역 내에서 탄착점 위치를 추출하는 단계, 탄착점 위치에 따른 사격결과를 계산하여 사용자에게 제공하는 단계로 나누어진다. 전송된 영상을 이진 영상으로 변환 후 영사영역의 꼭짓점의 위치를 찾고 그 안에 존재하는 탄착점을 추출한다. 구현된 탄착점 추출과정을 단계별로 제시하였으며 모의 사격 시스템을 위한 인터페이스에서 결과를 확인 할 수 있도록 하였다. 실험을 통해 영사영역의 꼭짓점 위치의 정확성을 확인하였으며 탄착점 추출 및 그에 따른 점수 환산결과를 확인할 수 있도록 하였다.
This study was to compare the major kinematic factors between the success and failure group on performing the back somersault motion in floor exercise. Three gymnasts(height : $167.3{\pm}2.88cm$, age : $22.0{\pm}1.0years$, body weight : $64.4{\pm}2.3kg$) were participated in this study. The kinematic data was recorded at 60Hz with four digital video camera. Two successful motions and failure motions for each subject were selected for three dimensional analysis. 1. Success Trail It was appear that success trail was larger than failure group in projection velocity, but success trail was smaller than failure trail in projection angle. Also it was appear that success trail was longer than failure group in the time required. Hand segment velocity and maximum velocity in success trail were larger than those in failure trail, and this result was increasing the projection velocity and finally increasing the vertical height of center of mass. At the take-off(event 2), flection amount of hip and knee joint angle was contributed to the optimal condition for the take-off and at the peak point, hip and knee joint angle was maximum flexed for reducing the moment of inertia. Also in this point, upper extremities of success trail extended more than those of failure trail. in this base, success trail in upward phase(p3) 2. Failure Trail It was appear that failure trail was smaller than success trail in projection velocity, but failure trail was larger than success trail in projection angle. Also it was appear that failure trail was more short than success trail in the time required. Hand segment velocity and maximum velocity in failure trail were smaller than those in success trail, and this result was reducing the projection velocity and finally reducing the vertical high of center of mass. At the take-off(event 2), flection amount of hip and knee joint angle wasn't contributed to the optimal condition for the take-off and at the peak point, hip and knee joint angle wasn't maximum flexed for reducing the moment of inertia. Also in this point, upper extremities of failure trail didn't extended more than those of success trail.
Let X be a smooth hypersurface X of degree d ≥ 4 in a projective space ℙn+1. We consider a projection of X from p ∈ ℙn+1 to a plane H ≅ ℙn. This projection induces an extension of function fields ℂ(X)/ℂ(ℙn). The point p is called a Galois point if the extension is Galois. In this paper, we will give necessary and sufficient conditions for X to have Galois points by using linear automorphisms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.