• Title/Summary/Keyword: Point electrode

Search Result 371, Processing Time 0.032 seconds

A Model Study for Electrical Resistivity Method Using Three-Point Electrode Array (Three-Point 전극(電極) 배열법(配列法)을 이용(利用)한 전기(電氣) 비저항탐사(比抵抗探査) 모형연구(模型硏究))

  • Min, Kyung Duck;Kim, Chong Mi
    • Economic and Environmental Geology
    • /
    • v.14 no.3
    • /
    • pp.111-122
    • /
    • 1981
  • This study is a model analysis for an effective application of the geophysical prospecting to the investigation of geological structures or useful resources, and the purpose of it is to research a property of the electrical resistivity prospecting, especially by using a Three-Point electrode array method. In using the Three-Point electrode array method, it is theoretically assumed to choose the infinite for a distance between the two current electrodes, however it is impossible in applying to the practical field prospecting. Therefore this study was conducted for determination and presentation of a minimum appropriate distance between the two current electrodes by making a study on prospecting effect in the variation of distance between both the electrodes. In case that the ratios of the distance between the two current electrodes to that between the two potential electrodes are respectively chosen for 40, 400, 5,000, the experimental data of this study showed that the minimum appropriate distance between the two current electrodes is forty times as much as that between two potential electrodes. In order to make clear a problem about prospecting depth which is essential to the data processing, it had been chosen equally to the distance between two potential electrodes. As a result of it, it was shown that the anomaly is appeared along the position of an assumed ore body. Consequently it was found out that the prospecting depth of the Three-Point electrode array method is the same as the distance between the two potential electrodes. From the model experiment on the sheeting ore body(or linear structure) of horizontal, dipping of $30^{\circ}$, $60^{\circ}$ and vertical on the basis of above experimental condition, it was found out that the position and dip of assumed ore body could be inferred from the aspects of the equiresistivity curve. In consequence of performing out the simultaneous Normal and Reversal electrode movement, it was shown that the electrode movement of the Reversal forms the anomaly more clearly than that of Normal when the sheeting ore body is situated obliquely, therefore it could be ascertained that the electrode movement have to be performed simultaneously in the manner of Normal and Reversal. It was also exhibited that the aspect of the equiresistivity curve forms symmetrically when an assumed ore body (or linear structure) is situated horizontally or vertically, that is, symmetrically, and moreover that the aspect of the equiresistivity curve forms unsymmetrically when an assumed ore body (or linear structure) is situated obliquely. On the basis of these experimental analysis it is thought that it can be inferred from the aspect of equiresistivity curve whether an assumed ore body is obliquely situated or not.

  • PDF

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

Study on the Development of Meridian Impedance Measurement System (경락 임피던스 측정 시스템 개발에 관한 연구)

  • Lee, Woo-Cheol;Yin, Chang-Shik;Min, Kyoung-Kee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.422-429
    • /
    • 2009
  • Meridian which used as the basic theory of acupuncture treatment, is an important functional connection system of acupuncture point in oriental medicine. Yangdorak and EAV have lack of precision because of using 2-electrode method, occurring high non-uniformed current density and electrode contact status on electrode placement spot. Therefore we implemented a meridian impedance measurement system for measuring meridian impedance using 4-electrode method. In order to confirm the precision of developed system, we made an constant current characteristic experiment using standard resistor. As a results of clinical study with 18 subjects, the meridian impedance showed that reproductivity and repeatability of HT7 acupuncture point are $0.515[k{\Omega}]{\pm}0.000$(mean${\pm}$standard deviation) and $0.515[k{\Omega}]{\pm}0.002$, respectively. And reproductivity and repeatability of PC7 are $0.521[k{\Omega}]{\pm}0.000$ and $0.521[{\Omega}]{\pm}0.001$ respectively. The proposed system was stable and reliable. Therefore this study proved AC impedance method to valid in measuring meridian impedance, and also verified precision and repeatability of the proposed meridian impedance measurement system. The proposed system will serve as more effective method of measuring meridian phenomena as a bioelectric signal in clinical practice.

Micro Electrochemical Machining using Anodic Polarization Curve (양극분극곡선을 미용한 미세 전해가공)

  • 최영수;강성일;전종업;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.999-1002
    • /
    • 2002
  • In this research, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result. it was confirmed that anodic voltage curve could be used very effectively for determining the optimal condition of micro-ECM, and the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.

  • PDF

Oxygen sensor for the low temperature-measurement using yttria stabilized zirconia(YSZ) electrolyte and Ag electrode (YSZ 전해질과 은 전극을 이용한 저온 산소센서에 대한 연구)

  • Yang, Young-Chang;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.97-101
    • /
    • 2006
  • Silver electrode having a high Electrocatalytic activity is oxygen-permeable electrode, in which oxygen ad-atoms are adsorbed and moved toward YSZ electrolyte by bulk diffusion. It is the different point in comparison to usual porous electrodes, especially platinum, which react with oxygen only in TPBs(Three Phase Boundaries). Also ad-atoms at TPBs of Pt are diffused to YSZ electrolyte by interfacial diffusion mechanism. These properties were used for turning down the operating temperature of YSZ from over $600^{\circ}C$ to below $450^{\circ}C$. The different heat-treatment temperature between a working electrode and a reference electrode suppresses the formation of silver oxides and reduces a volatility of Ag as well. Above all, these own characteristics and special processes of Ag improved a long-term stability of a oxygen sensor.

Charge Injection by Needle Electrode and Reduction Properties of Streaming Electrification (침 전극을 이용한 전하 주입과 유동대전 감소 특성)

  • Kim, Yong-Woon;Lee, Duck-Chool;Kang, Chang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.108-112
    • /
    • 2000
  • The electric charge generated by flowing insulation liquid can create hazardous spark in transfer line and receiving tank etc. These electrification has generally been measured by current measurement with a ammeter connected to the receiving tank. This paper reports on the experimental result obtained by this method. As a experimental results: The injected charge value for unit volume increased in the following condition, the edge of the needle electrode was sharp, the number of needle electrode was fewer, the edge of the needle electrode was located close to the inside wall. When the charge density in the charge reducer is constant, electrode current and electrode potential by the charge injection from outside increase with increasing of oil velocity and streaming current. The electrode potential in charge reducer is made maximum value at edge point of reducer inside and minimum value at center line of charge reducer.

  • PDF

Relative Comparison of Cathode Polarizations in Solid Oxide Fuel Cells Using the Spreading Concept in AC 2 Point Impedance Spectroscopy

  • Lee, Byung-Kook;Kim, Eui-Hyun;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • A modified two-point impedance spectroscopy technique exploits the geometric constriction between an electrolyte and a cathode with an emphasis on semispherical-shaped electrolytes. The spatial limitation in the electrolyte/electrode interface leads to local amplification of the electrochemical reaction occurring in the corresponding electrolyte/electrode region. The modified impedance spectroscopy was applied to electrical monitoring of a YSZ ($Y_2O_3$-stabilized $ZrO_2$)/SSC ($Sm_{0.5}Sr_{0.5}CoO_3$) system. The resolved bulk and interfacial component was numerically analyzed in combination with an equivalent circuit model. The effectiveness of the "spreading resistance" concept is validated by analysis of the electrode polarization in the cathode materials of solid oxide fuel cells.

The Analysis for PDP Discharge as a Parameter of Electrode Structure by 3-Dimensional Light Emission Measurement (3차원 광 측정을 통한 PDP의 전극 구조별 방전 분석)

  • Woo, Seok-Gyun;Choi, Hoon-Young;Lee, Seok-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.190-196
    • /
    • 2001
  • We measured 3-dimensional images of the light emitted from plasma display panel(PDP) by using newly proposed scanned point detecting method(SPDM). The SPDM has the point detector with pinhole. The light emitted from PDP cell at the in-focus position can pass through the pinhole and be collected by detector. On the contrary, the light emitted from PDP cell at the out-of-focus positions is focused on the front of or the behind of the pinhole. We could analyze the characteristic of 3-dimensional light emission distribution by SPDM. From 3-dimensional measurement of 828[nm], the efficient design of PDP cell, the importance of opening ration, and the relations between BUS electrode position and discharge intensity are obtained. Also, the relationship between discharge characteristics and sustain electrode structures in AC-PDP are studied by measuring luminance, current, and discharge voltage.

  • PDF

Determination of Electrode Potential in Micro Electrochemical Machining of Stainless Steel (스테인리스강의 미세 전해 가공 시 전극 전위의 선정)

  • Park B.J.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1281-1284
    • /
    • 2005
  • In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. Generally, the stainless steel electrode corrodes, passivates or dissolves in the electrochemical cell according to the electrode potential. Therefore, the electrode must maintain stable potential. The stable electrode potentials of tool and workpiece were determined with the potentiodynamic polarization test and verified experimentally from the point of machining stability and machined surface quality.

  • PDF

A Study on the Effect of the Contact Electrode Slits in the Vacuum Interrupter with Axial Magnetic Field Type (종자계형 진공 인터럽터에서 접점전극 슬릿의 영향에 관한 연구)

  • 하덕용;강형부;최승길;최경호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.822-829
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density for each slits made on the contact electrode in the vacuum interrupter with axial magnetic field type using 3-dimension finite element analysis. It has been known that the presence of an axial magnetic field parallel to the current flow in the arc plasma can increase the high current breaking capacity of vacuum interrupter by carrying out the arc plasma from constricted mode to diffusion mode. The axial magnetic field is created of itself by current flow in the segments of coil electrode behind the contact electrode. The analyzed results show that if the slits are made in the contact electrode, they can increase the current density and axial magnetic flux density in the contact electrode surface and at the gap distance, which is due to decrease the effect of eddy currents flowing in the contact electrode. The phase shift due to eddy currents, defined 3s time difference between the maximum value of current and axial magnetic field, is decreased still more by increasing the number of slits made in the contact electrode at the center point of gap distance. These results demonstrate that 3-dimension finite element analysis has a great deal of merits in the development and evaluation of new electrode at the design of vacuum interrupter.