• Title/Summary/Keyword: Point bearing capacity

Search Result 96, Processing Time 0.026 seconds

Investigation of interface response of reinforced concrete columns retrofitted with composites

  • Achillopoulou, Dimitra V.;Kiziridou, Alexandra N.;Papachatzakis, Georgios A.;Karabinis, Athanasios I.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1337-1358
    • /
    • 2016
  • The current study focuses on the assessment and interface response of reinforced concrete elements with composite materials (carbon fiber reinforced polymers-CFRPs, glass fiber reinforced polymers-GFRPs, textile reinforced mortars-TRM's, near surface mounted bars-NSMs). A description of the transfer mechanisms from concrete elements to the strengthening materials is conducted through analytical models based on failure modes: plate end interfacial debonding and intermediate flexural crack induced interfacial debonding. A database of 55 in total reinforced concrete columns (scale 1:1) is assembled containing elements rehabilitated with various techniques (29 wrapped with CFRP's, 5 wrapped with GFRP's, 4 containing NSM and 4 strengthened with TRM). The failure modes are discussed together with the performance level of each technique as well as the efficiency level in terms of ductility and bearing/ bending capacity. The analytical models' results are in acceptable agreement with the experimental data and can predict the failure modes. Despite the heterogeneity of the elements contained in the aforementioned database the results are of high interest and point out the need to incorporate the analytical expressions in design codes in order to predict the failure mechanisms and the limit states of bearing capacities of each technique.

Assessment of Zeolite Soil Mixture as Adsorptive Fill Material at Industrial Zones (산업단지에서의 흡착 성토재로써 제올라이트 토양혼합물의 특성평가)

  • Kwon, Patrick Sun;Rahim, Shahrokhishahraki;Park, Jun Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.203-209
    • /
    • 2019
  • A number of industrial zones in South Korea were reported contaminated by heavy metals. Such contamination could cause severe damage to the subsurface environment including soil and groundwater. The treatment of zeolite mixing with soil at the bottom of such industrial zones might prevent, or at least reduce the damage of contamination by adsorption of the heavy metals from the leakage. However, such mixtures should maintain the proper bearing capacity as a foundation fill material from the geotechnical point of view at the same time. To investigate the effect of mixtures of zeolite with local soils for the adsorption of heavy metals (Zn, Pb) and sustainability of bearing capacity, adsorption isotherm tests and direct shear test with compaction tests were performed. Results showed that the mixing zeolite with local soils effectively reduces the spreading of the heavy metal contamination when maintaining its proper geotechnical properties as a fill material of industrial zones.

Evaluating the Load Carrying Capacity of Aged Bridges in Consideration of the Functional Deterioration of Point Parts (지점부의 기능저하를 고려한 노후교량의 내하력평가)

  • Yang, Seung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • Structural analysis used to evaluate the load carrying capacity of a bridge should implement behavioral characteristics similar to the actual behaviors of the structure through loading tests, but it is not feasible in many cases due to the behavioral characteristics of points, inadequate modeling method in structural analysis, errors in loading tests, changes in strength and rigidity resulting from cross-sectional damage, etc. This problem can be more serious if bridge bearings have been damaged or were not installed and, consequently, the bearings do not function properly. This study produced results similar to actual behaviors using a structural analysis model built with support moment derived from the difference $\Delta{\delta}$ between measured deflection obtained by confining the cantilever segment of a solid beam and calculated deflection under a unrestrained condition. When the load carrying capacity of a bridge in operation was evaluated in consideration of the confinement condition of supports, the result was 15~19% lower than load carrying capacity calculated by the existing method.

Flexural behaviors of full-scale prestressed high-performance concrete box girders

  • Gou, Hongye;Gu, Jie;Ran, Zhiwen;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.595-605
    • /
    • 2020
  • In this study, the flexural behaviors of full-scale prestressed concrete box girders are experimentally investigated. Four girders were fabricated using two types of concrete (compressive strengths: 50 MPa and 70 MPa) and tested under four-point bending until failure. The measured parameters included the deflection, the stress and strain in concrete and steel bars, and cracks in concrete. The measurement results were used to analyze the failure mode, load-bearing capacity, and deformability of each girder. A finite element model is established to simulate the flexural behaviors of the girders. The results show that the use of high-performance concrete and reasonable combination of prestressed tendons could improve the mechanical performance of the box girders, in terms of the crack resistance, load-carrying capacity, stress distribution, and ductility.

Seismic Performance Evaluations of RC Bearing Wall Systems with Coupling Beams - For Apartment Buildings in 1990s (연결보가 있는 철근콘크리트 내력벽시스템의 내진성능평가 -1990년대 공동주택을 중심으로-)

  • Lee, Young-Wook;Chae, J.-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2011
  • To investigate the performance of apartment buildings which were built in the 1990s and which have RC bearing wall systems with coupling beams, construction drawings of 13 buildings were collected and analyzed. To evaluate the seismic performance, FEMA 356 and FEMA 440 were selected as guidelines. For the demand curve, the seismic design spectrum in KBC 2009 is used. For each building, the performance points for life safety and the collapse prevention state are calculated. It was found that 9 out of 13 buildings (about 70%) showed damage more severe than the collapse prevention level at the performance point and more damage could be seen at the coupling beams than the walls. However, the story drift limit of FEMA 356 was satisfied for all buildings. Through the analysis of performance points, it was shown that the spectral acceleration has an inverse relationship with the natural period.

A Study on Development of End Bracket for External Prestress Method (외부프리스트레스트 보강 공법에 사용되는 단부 브라켓의 개발 연구)

  • 한만엽;이재형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.721-726
    • /
    • 1999
  • Diverse strengthening methods for reinforced concrete are applied to real structures with a variety of materials. On the other hand, only external prestressing is used for strengthening damaged prestressed concrete girders. But the end brackets for external prestressing are hard to design and to manufacture, the magnitude of prestressing is limited when applied to real structures. The current end brackets are not clearly understood in load transmitting mechanisms and they may damage the original girder by drilling during construction. And also the designed welding area of the current bracket is insufficient to support the high load. The problems of current end bracket are solved in this study. And a new and improved end bracket is proposed and tested. The tested end bracket is similar to the end bearing bracket, but many supportting plates are addded to increase its welding length of the weakest point of the bracket. The increased welding length finally increases its load carrying capacity significantly.

  • PDF

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

Enhancing the Blast Resistance of Structures Using HPFRCC, Segmented Composites, and FRP Composites (HPFRCC, 분절 복합체 및 FRP를 활용한 구조물의 내폭 성능 향상)

  • Yoon, Young-Soo;Yang, Jun-Mo;Min, Kyung-Hwan;Shin, Hyun-Oh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.745-748
    • /
    • 2008
  • The past structures were just required bearing capacity to service load, serviceability, and resistance to corrosion. However this point of view has changed after 9.11 terrorism, capacities which can bear impact loading by explosion, and heat by fire happening at the same time, become to be important as a basic condition. The blast resistance capacity of structures is very important part against all over the world is intimidated by terrorism everyday in current point of time. The target of this research is a development of segmented composites and layered structures with high blast resistance using cementitious composites, concrete and FRP composites, which has high tensile strength and ductility, to apply in not only existing facilities but also new ones. Through the improvement of blast resistance, casualties and economic loss can be minimized, and it is possible to diminish the structure collapse and delay the time of structure collapse by thermal effect, impact loading, dynamic loading and high strain.

  • PDF

An Estimation of Shear Capacity of Hexagonal Masonry Walls Under Cyclic Loading (반복하중을 받는 육각형 블록 벽체 전단내력평가)

  • Chang, Gug-Kwan;Seo, Dae-Won;Han, Tae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.205-214
    • /
    • 2010
  • Masonry structures have been used throughout the world for the construction of residential buildings. However, from a structural point of view, the masonry material is characterized by a very low tensile strength. Moreover, the bearing and shear capacity of masonry walls have been found to be vulnerable to earthquakes. In this study, to improve the seismic performance of masonry walls, hexagonal blocks were developed and six masonry walls made with hexagonal block were tested to failure under reversed cyclic lateral loading. This paper focuses on an experimental investigation of different types of wall with hexagonal blocks, i.e. walls with different hexagonal blocks and with different reinforcing bar arrangements, subjected to applied cyclic loads. The cracking, damage patterns and hysteretic feature were evaluated. Results from the hexagonal masonry wall were shown more damage reduction and less brittle failure in comparison to the existing rectangular masonry walls.

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.