• Title/Summary/Keyword: Point bearing capacity

Search Result 96, Processing Time 0.052 seconds

Evaluation of Point Bearing Capacity using Field Model Pile Test (현장 축소모형 말뚝 시험을 이용한 선단지지력 예측)

  • Lee, Chang-Ho;Lee, Woo-Jin;Jeong, Hun-Jun;Han, Shin-In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2005
  • In many practical cases, design methods of pile have been used mainly semi empirical bearing capacity equations. It can be done that confirmation of pile bearing capacities through using of dynamic and static tests during constructing or after constructions. If a prediction of layered point pile bearing capacity could be done through simple tests during field investigation, it could be done that more reliable design of pile than a prediction of using semi empirical equations or static formulations. This paper suggests a method to estimated point bearing capacity during in-situ investigation by using the dynamic rod model pile and verifies the point bearing capacity compare with results of static pile load tests. From test results, the unit ultimate point bearing capacities are relatively similar through a dynamic rod model pile tests and static pile load tests. The unit ultimate point bearing capacity by using N value is shown about 50 % value of measured unit ultimate point bearing capacity from field test result and the prediction of the unit ultimate point bearing capacity by using N value is shown very conservative, illogical and uneconomical pile designs.

  • PDF

Bearing Capacity Characteristics of Drilled Shafts using Percussion Rotary Drilling (PRD 공법을 이용한 매입말뚝의 지지력 특성)

  • 윤형준;정국상;정상섬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.307-314
    • /
    • 2001
  • The bearing capacity of drilled shafts that take excavation by Percussion Rrotary Drilling(PRD) into consideration was evaluated using static and dynamic pile load tests. The emphasis was on quantifying the allowable bearing capacity and point load-transfer at the pile tip on seven instrumented steel piles. Of the seven instrumented piles, five piles are placed to the bottom of the excavation by rotary and pushing into the final depth of the excavation, as opposed to the two driven piles. Based on the results obtained, it is shown that the skin friction mobilized by PRD is much greater than point resistance, whereas in driven piles, the point resistance is greater than skin friction. It is also found that much greater pile capacity was proved in the case of drilled shafts, compared to the driven piles and thus, the excavation by rotary drilling gives reliable pile capacity required to design axially loaded piles.

  • PDF

A Study on the Bearing Capacity characteristics of Stone column by Numerical Analysis (수치해석에 의한 쇄석말뚝의 지지력 특성 고찰)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.90-99
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which enhances ground conditions through ground water draining, settlement reducing and bearing capacity increasing complexly by using crushed stone instead of sand in general vertical drain methods. In recent, general construction material, sand is in short of supply, because of the unbalance of demand and supply. Also, the bearing capacity improving effect of stone column method is needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improving ground behavior reciprocally is not yet prepared. To contribute this situation, bearing capacity behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, bearing capacity behavior prediction formula was suggested. This formula was verified by comparing the prediction result with in situ test.

  • PDF

A Study on the Parallel Line Pivoted Pad Thrust Bearing (평행선 지지식 추력베어링에 관한 연구)

  • 이경우;김종수;제양규
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.24-28
    • /
    • 1999
  • This paper describes a new pivoting technique to improve bearing performance in pivoted pad thrust bearings. This new technique adjusts the pivot line in a line pivoted pad thrust bearing to be parallel to the trailing edge of a sector shaped pad. Bearing performance factors such as load carrying capacity, frictional torque and flow rate are numerically investigated for conventional point-pivoted and line-pivoted pads and for the new parallel-line pivoting technique. It is shown that the load carving capacity can be maximized with the new technique.

Bearing Characteristics of Waste Fishing Net - Reinforced Sand With Different Embedded Depths (폐어망 보강 깊이에 따른 모래지반의 지지력 특성)

  • Ha, Yong-Soo;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • Geosynthetics such as geogrids or geotextiles have been widely used to improve the bearing capacity of soft ground. This study investigated the California bearing ratio (CBR) of waste fishing net (WFN)-reinforced sand. CBR tests were carried out to evaluate the improvement in the bearing capacity of WFN-reinforced sand with different embedded depths. The experimental results indicated that the CBR increased as the embedded depth of the WFN decreased. The bearing capacity ratio (BCR) is the ratio of the bearing capacity of reinforced ground to that of unreinforced ground. The BCR at the penetration depths of 2.5 mm, 5 mm, and the peak point decreased with an increase in the embedded depth.

Comparison of Bearing Capacity between SCP and GCP by Unit Cell Model Tests (단일말뚝 형태의 모형시험을 통한 SCP와 GCP의 극한지지력 비교)

  • 김병일;이승원;김범상;유완규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.41-48
    • /
    • 2004
  • Several centrifuge modelling tests were performed to compare sand compaction pile (SCP) with gravel compaction pile (GCP) at the point of bearing capacity. SCP and GCP were installed as 30, 40, 50, 60, 70% of replacement ratio in cylindrical model tank (diameter = 20 cm, height = 40 cm), and the loading tests were carried out to analyze the bearing characteristics of soft clay ground reinforced by SCP and GCP. As a result of loading tests, the bearing capacities of soft grounds reinforced by SCP and GCP increase with increasing replacement ratio of pile, and a GCP reinforced ground has larger bearing capacity than that of a SCP reinforced ground. Several proposed bearing capacity equations for ground reinforced by SCP or GCP were compared with loading test results.

말뚝기초의 연적 방향 극한하중

  • 김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.209-236
    • /
    • 2002
  • Ultimate pile capacity - Point resistance - Frictional resistance - Determination of point and frictional resistances from field tests - Summary of recommendations from design Group effects Settlement analysis.

  • PDF

Comparison of the Performance of Pivoted Pad Thrust Bearings (피봇식 패드 추력베어링의 성능 비교)

  • 김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.337-342
    • /
    • 1998
  • In this paper the lubrication performances of line pivoted pad thrust bearing and point pivoted pad thrust bearing are studied by a numerical analysis. The running characteristic parameters such as nondimensional load carrying capacity nondimensional friciton power loss nondimensional flow rate and film thickness ratios are calculated for various circumferential pivot positions. The results provide a usdful data for the selection of pivot position in a pivoted and thrust bearing.

  • PDF

Estimation of Rotation Point of Laterally Loaded Piles through Laboratory Test (실내모형 실험을 통한 수평재하말뚝의 회전점 산정)

  • Hwang, Sung-Wook;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.744-747
    • /
    • 2008
  • In this study, to analyze the rotation point of piles, the laboratory lateral load test was performed. The lateral load bearing capacity is one of the important factor related with structure failure directly. Analyzing rotation point in different soil condition, relative density and stress condition, leads more accurate ultimate lateral bearing capacity. Also, reliability was analyzed about established 예측식 as applying to tapered pile. As a result, the established prediction was suitable to cylider pile, but not to tapered pile.

  • PDF

Bearing Capacity Characteristics of Stone Column by Numerical Analysis (수치해석에 의한 쇄석기둥의 지지력 특성)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which can enhance ground conditions such as the settlement reduction and the increasement of bearing capacity with applying the crushed stone instead of sand. In recent, general construction material, sand is in short of supply. Therefore, the bearing capacity improvement by the stone column is considered as the alternative method needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improvement effect of ground is not yet prepared. For the analysis of above mentioned points, the behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, the formula for the bearing capacity estimation of stone column was suggested. This formula was verified by comparing the prediction result of in situ test.

  • PDF