자율주행차량에서 핵심적인 역할을 수행하는 LiDAR의 주변 환경 검지 시인성을 향상시키기 위해서는 LiDAR 성능의 개선 뿐만 아니라, 검지 물체의 개선도 필요하다. 이에 본 연구는 LiDAR 센서를 통해 수집되는 point cloud 데이터 기반의 형상인식 알고리즘을 활용하여 자율주행차량이 인식하기에 유리한 교통안전표지 형상과 개선방안을 제시하였다. 실험을 위해 point cloud 활용 연구에서 보편적으로 활용되는 DBSCAN 기반의 도로표지 인식·분류 알고리즘을 개발하고 실도로 환경에서 32ch LiDAR를 활용, 도로표지 5종에 대한 인식 성능 실험을 수행하였다. 연구결과, 정사각형이나 원형보다는 상하 비대칭이 있는 정삼각형, 직사각형과 같은 형상이 보다 적은 점군의 수로도 검지가 가능하고, 83% 이상의 높은 분류 정확도를 보였다. 또한, 정사각형 표지의 크기를 1.5배 확대할 경우, 분류 정확도를 향상시킬 수 있었다. 이러한 결과는 미래 자율주행 시대의 센서를 위한 전용 도로·교통안전시설물 개선 및 신규 시설물 개발에 활용될 수 있을 것으로 기대된다.
International journal of advanced smart convergence
/
제6권4호
/
pp.88-95
/
2017
The conventional scan methods are based on a laser scanner and a depth camera, which requires high cost and complicated post-processing. Whereas in photometric scanning method, the 3D modeling data is acquired through multi-view images. This is advantageous compared to the other methods. The quality of a photometric 3D model depends on the environmental conditions or the object characteristics, but the quality is lower as compared to other methods. Therefore, various methods for improving the quality of photometric scanning are being studied. In this paper, we aim to investigate the effect of illumination conditions on the quality of photometric scanning data. To do this, 'Moai' statue is 3D printed with a size of $600(H){\times}1,000(V){\times}600(D)$. The printed object is photographed under the hard light and soft light environments. We obtained the modeling data by photometric scanning method and compared it with the ground truth of 'Moai'. The 'Point-to-Point' method used to analyseanalyze the modeling data using open source tool 'CloudCompare'. As a result of comparison, it is confirmed that the standard deviation value of the 3D model generated under the soft light is 0.090686 and the standard deviation value of the 3D model generated under the hard light is 0.039954. This proves that the higher quality 3D modeling data can be obtained in a hard light environment. The results of this paper are expected to be applied for the acquisition of high-quality data.
그래픽스 분야의 제품모델링 제작기술은 급속하게 발전하고 있고 3차원 데이터 응용과 활용성은 계속 증가하고 있다. 제품디자인 제작에 있어 3차원 모델링 제작에는 많은 시간이 소요된다. 최근 역설계 방식은 3D 데이터의 응용과 제작시간단축으로 활용성이 크다. 본 연구는 영상데이터 기반으로 포토메트리를 이용하여 3차원 포인트 클라우드 및 메쉬 데이터를 추출하고 이를 응용하여 제품의 1차 시안을 제작한다. 디자인 수정에 중점을 두어 2차 시안이 제작되었으며 3차 시제품 제작을 위한 3D 프린팅 작업을 진행한다. 이러한 제품디자인 제작과정에서 영상데이터의 활용과 가능성 및 3D 모델링 제작시간의 단축, 효율적인 프로세스를 제시한다. 또한 제품디자인 환경변화에 대응하기 위한 신제품 개발 프로세스 시스템의 모델을 제안한다.
로봇을 적용한 자동화 생산 라인에서 로봇 셋업 시 시뮬레이션을 통한 Off-Line Programming(OLP)과 로봇 캘리브레이션은 작업 시간을 단축하고 양산 전부터 생산 품질을 관리하기 위해 필수적이다. 본 연구에서는 상용 3D 스캐너를 사용하여 생산 라인의 CAD 데이터와 현장의 3차원 측정 스캔 데이터를 정합하는 로봇 캘리브레이션 방법을 개발하였다. 제안한 방법은 Iterative Closest Point(ICP) 알고리즘을 통해 두 개의 3차원 점군 데이터를 정합하여 로봇을 교정한다. 정합은 3단계로 수행한다. 먼저 CAD 데이터로부터 3개의 평면으로 연결된 꼭짓점을 특징점으로 추출한다. 추출한 특징점 주변에 위치한 스캔 점군데이터로부터 평면을 재구성하여 대응하는 특징점을 생성한다. 마지막으로 ICP 알고리즘을 통해 추출한 특징점들 간의 거리를 최소화하여 위치 변환 행렬을 계산한다. 자동차 차체 조립라인의 스팟용접 로봇 설치에 제안한 방법을 적용한 결과 스팟용접에서 일반적으로 요구하는 정밀도 1.5mm 수준으로 로봇의 위치 및 자세를 캘리브레이션 할 수 있었으며, 기존에 레이저 트래커를 사용하면 로봇 한 대당 5시간 이상 소요되던 셋업 시간은 40분 이내로 단축할 수 있었다. 개발한 시스템을 사용하면 차체 스팟 용접에 필요한 정밀도를 유지하면서 자동차 차체 조립 라인의 OLP 작업시간을 단축하여, 로봇 정밀 티칭 시간을 단축하여, 생산제품의 품질 향상 및 불량률을 최소화할 수 있다.
지하 구조물 구축 시 구조물의 안정성을 확보하기 위해서는 주변 암반에 대한 암반 분류가 필수적으로 수행해야 한다. 특히 암반 내에 존재하는 불연속면은 암반의 물리적, 역학적 특성에 지배적인 영향을 미치므로 암반 불연속면에 대한 정확한 정보의 획득을 통해 신뢰도 높은 암반분류값을 제시하는 것은 매우 중요한 요소이다. 이러한 암반 분류는 지금까지 대부분 수작업을 통해 수행되었다. 그러나 대규모 지질조사와 같은 대형 조사면적에 대한 정확도의 부재, 비숙련자에 의한 암반 등급 결정값의 신뢰도 결여 등에 대한 문제점들이 항시 제기되어 왔다. 따라서 최근에 와서는 넓은 범위에 대해서도 신속하고 정확한 암반 분류를 위해 LiDAR를 이용한 암반 분류의 자동화에 대한 연구가 국내·외적으로 널리 이루어지고 있는 추세이다. 그러나 LiDAR 촬영으로 획득되는 point cloud로부터 불연속면의 정보를 분석하는 알고리즘의 특성에 따라 상이한 결과가 도출될 수 있으며, 숙련자에 의한 수작업의 결과를 완벽하게 대체하기에는 미흡한 경우가 종종 발생하고 있다. 따라서 본 연구에서는 LiDAR 촬영으로 획득한 point cloud로부터 불연속면을 추출하는 다양한 알고리즘을 설명하였으며, 이들 알고리즘을 이용하여 실제 암반 사면을 대상으로 불연속면을 추출하는 과정을 분석하였다. 본 연구에서 제시하는 다양한 알고리즘의 적용 과정은 향후 LiDAR 등을 통하여 획득한 디지털 데이터로부터 암반 불연속면을 추출하는 연구에서 참고자료로 활용될 것을 기대한다.
The design models of a new product in general are created using clay models or wooden mock-ups. The reverse engineering(RE) technology enables us to quickly create the CAD model of the new product by capturing the surface of the model using laser digitizers or coordinate measuring machines. Rapid prototyping (RP) is another technology that can reduce the product development time by fabricating the physical prototype of a part using a layered manufacturing technique. In reverse engineering process, however, the digitizer generates an enormous amount of point data, and it is time consuming and also inefficient to create surfaces out of these data. In addition, the surfacing operation takes a great deal of time and skill and becomes a bottleneck. In rapid prototyping, a faceted model called STL file has been the industry standard for providing the CAD input to RP machines. It approximates the CAD model of a part using many planar triangular patches and has drawbacks. A novel procedure that overcomes these problems and integrates RE with RP is proposed. Algorithms that drastically reduce the point clouds data have been developed. These methods will facilitate the use of reverse engineered geometric data for rapid prototyping, and thereby will contribute in reducing the product development time.
The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.
본 연구에서는 주요 산림 선진국인 오스트리아, 일본, 뉴질랜드, 인도네시아의 산림 정책 및 레이저 스캐닝 기술을 활용한 산림자원조사 사례를 조사하고, 레이저 스캐닝을 통해 취득되는 포인트클라우드 데이터의 산림자원조사 적용 가능성을 파악하였다. 연구를 통해 선진국의 산림정책은 지속 가능한 산림의 보전 및 관리와 일자리 창출, 목재 생산성 향상을 목적으로 추진되고 있으며, 새로운 기술 연구 및 실제 사업에서의 적용이 이루어지고 있음을 알 수 있었다. 우리나라는 주요 산림 선진국과 비교했을 때 국토면적에 비해 높은 산림 비율을 가지고 있지만 임목축적은 상대적으로 낮게 나타나 임목축적의 향상을 위한 과학적인 산림관리가 필요한 시점이라 할 수 있다. 레이저 스캐닝 기술의 적용 가능성 파악을 위해 포인트클라우드 데이터를 이용한 산림자원조사 실험을 수행하였으며, 흉고직경, 수고, 단위면적당 본수를 산출하고, 수관의 형태를 파악하였다. 향후 다양한 레이저 스캐닝 기술을 적용한 현장 실험과 정확도 평가가 이루어진다면 포일트클라우드를 이용한 산림자원조사의 정량적인 업무 개선정도를 제시할 수 있을 것이다.
실내에서 카메라를 이용한 로봇 응용이나 가상현실(Virtual Reality) 응용의 경우 평면을 찾고 추정하는 기술은 매우 중요한 기술이다. RGB-D 카메라의 경우 실내의 평면에서 질감 정보가 없는 평면에서도 3차원 관측 데이터를 얻을 수 있지만, 이미지 영역에서 점군 데이터(Point-cloud Data)를 처리하기 위해서는 많은 연산량이 필요하다. 더군다나 현재 관측되고 있는 평면의 개수가 몇 개인지 미리 알 수 없으며, 평면으로 검출(Plane Detection) 하더라도 강인하게 3차원에서 평면을 추정(Plane Estimation)하려면 추가적인 연산이 필요하다. 본 논문에서는 연속 데이터를 이용해 실시간으로 평면의 개수를 선택하며 평면을 추정하는 방법을 제시하고자 한다. 실험 결과를 통해 제안하는 방법이 전체 데이터를 처리하는 것에 비해 약 22배의 속도 개선을 가져 올 수 있음을 보였다.
최근 건축물의 노령화에 따른 건물 전체 기능저하와 화재 및 지반침하와 같은 재난에 따른 건축물의 안정성 저하로 구조물 해체 수요가 급격히 증가하는 추세이다. 특히, 구조물 구성부위의 변형이나 손상의 정도가 심각한 구조물은 부재 내 집중하중이 발생하여 구조물 전체의 안정성이 저하되어 빠른 시일 내에 안전하게 구조물 해체가 가능한 시공기술에 대한 수요가 증가하고 있다. 또한, 노후 구조물에 대한 비인가 증축이나 불법 개조와 같은 구조적 변경으로 시공 당시 건물의 설계도면과 상이한 경우가 빈번하다고 보고되어오고 있다. 본 연구에서는 해체 대상 구조물의 시공 당시 도면과 현 시점 구조와의 차이점을 보완하기 위하여, 실내외 구조 표면에 대한 실측값을 활용하여 3차원 모델을 역설계하는 기법을 제안하였다. 실제 해체 시공 예정인 건축물을 대상으로 구조물 외곽에 대하여 드론 촬영을 실시하고 구조물 내부는 LiDAR 스캐닝을 수행하여 건물외곽과 실내에 대한 점군데이터를 획득한다. 각각 점군데이터는 Smartmapper를 활용하여 정밀하게 정합되며 2차원 도면제작과 3차원 구조해석용 모델 작성에 사용된다. 제안된 역설계 기법을 검증하기 위하여 드론화상자료, LiDAR 스캐너자료, 정합자료로부터 생성된 3차원 모델과 실측된 부재간의 거리를 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.