• Title/Summary/Keyword: Pneumatic actuator

Search Result 127, Processing Time 0.022 seconds

Development of a Pneumatic Semi-Automatic Clutch for Commercial Vehicles based on the CAN Communication (CAN통신 기반의 상용차용 공압구동형 세미오토 클러치 개발)

  • Kim, Seong-Jin;Lee, Dong-Gun;Ahn, Kyeong-Hwan;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4742-4748
    • /
    • 2014
  • A semi-automatic clutch was developed for drivers of vehicles with manual transmission. The clutch is operated by pressing a switch on the gear stick without stepping on a clutch pedal when the driver wants to shift gears. To automatic control a clutch, driving information is provided by sensors installed under the vehicle. On the other hand, sensors are prone to failure under severe driving conditions and a long time is needed to install or repair these sensors in the vehicle. In this paper, a semi-automatic clutch that received driving information by CAN communication from the ECU was developed and a pneumatic actuator was used to operate the clutch. The semi-automatic clutch by a pneumatic cylinder was operated with a supply air pressure of more than 3bar.

Design and Experiment of a Miniature 4/3-Way Proportional Valve for a Servo-Pneumatic Robot Hand (공압 구동식 로봇 손을 위한 소형 4/3-way 비례제어 밸브의 설계 및 실험)

  • 류시복;홍예선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.142-147
    • /
    • 1998
  • Developing robot hands with multi-degree-of-freedom is one of the topics that researchers have recently begun to improve the limitation by adding flexibility and dexterity. In this study, an articulated servo-pneumatic robot hand system with direct-drive joints has been developed whose main feature is the minimization of the dimension. The servo-pneumatic system is advantageous to fabricate a dexterous robot hand system due to the high torque-to-weight and torque-to-volume ratio. This enables the design of a finger joint with an integrated rotary vane type actuator which produces high output torque without reduction gears, being very robust. In order to control the servo-pneumatic finger joints, a miniature proportional valve that can be attached to the robot hand is required. In this paper, a flapper nozzle type 4/3-way proportional directional valve has been designed and tested. The experimental results show that the developed valve can control a finger joint satisfactorily without much vibratory joint movements and acoustic noises.

  • PDF

Force Control of 6-DOF Pneumatic Joystick

  • Tanaka, Yoshito;Hitaka, Yasunobu;Yun, So-Nam;Kim, Ji-U;Jeong, Eun-A;Park, Jung-Ho;Ham, Young-Bog
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, it is presented the development of a new type force feedback system. It is based on a 6-DOF Stewart parallel mechanism which has six pneumatic actuated cylinders. The thrust force of each cylinder is controlled by PWM control for the solenoid valve and it is actualized by PIC controller. When the pneumatic actuator is controlled, it must be considered the influence on the compressibility of air. For this problem, we guarantee the control characteristics by the effect of the accumulator. It is confirmed that the thrust force of the cylinder can be applied to the pneumatic parallel mechanism, and is presented the experimental result of force control for vertical direction.

Experimental Study on the Movement of Pneumatic Actuating Mechanism for Self-Propelling Endoscope (자율주행 내시경을 위한 공압 구동장치의 이동특성에 관한 실험적 연구)

  • Lim, Young-Mo;Park, Ji-Sang;Kim, Byung-Kyu;Park, Jong-Oh;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.194-199
    • /
    • 2001
  • In this paper, we propose a new locomotive mechanism using impulsive force for microcapsule-type endoscope. It has the compact size for movement in the colon and actuating mechanisms for hi-directional movement. The actuating mechanism resembles a pneumatic cylinder and consists of body, inertia mass(piston). spring. pneumatic source and calve. When valve is ON, the pneumatic impulsive force between piston and body drives them in two opposite direction. As the air in the body is passed away, the contrary movements are occurred by spring reaction. Therefore, the direction of body's motion is determined by the relative magnitude of two opposite impulsive forces, i.e., pneumatic and spring force. The effect of two impulsive forces can simply be controlled by On-Off time of solenoid valve.

  • PDF

Pressure Control of a Piezoactuator-Driven Pneumatic Valve System (압전 작동기로 구동 되는 공압 밸브의 압력제어)

  • Jo, Myeong-Su;Yu, Jung-Gyu;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.399-405
    • /
    • 2002
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust H$_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

Development of Automation System for Component Inserting of Industrial PCB (산업용 PCB 부품삽입 자동화 시스템 개발)

  • Jeong Gu-Young;Yoon Myoung-Jong;Park Chang-Seog;Yu Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.950-955
    • /
    • 2005
  • A automatic component inserting system for industrial PCB is developed in this paper. This system has not been developed in Korea. Most domestic companies produce PCB manually. This process requires highly-skilled staff. Therefor, we developed a PCB inserting system for automation of the process and improved productivity. There are low parts in this system; press, table, tool change and control part. A hybrid press cylinder with pneumatic and hydraulic is used in the press part. The table part consists of pneumatic actuators, stepping motors and ball-screw mechanism. In the tool change part, upper tools can be exchanged automatically for the inserting of various components. The control part consists of motor drivers, PLCs and power supply.

[ $H_{\infty}$ ] Pressure Control of Pneumatic Valve Driven by Piezoactuators (압전 작동기로 구동 되는 공압 밸브의 $H_{\infty}$ 압력제어)

  • Yoo, J.K.;Cho, M.S.;Choi, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.673-678
    • /
    • 2001
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust $H_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

  • PDF

Development of A Pneumatic Actuation System with Damping Pist (감쇄피스톤을 이용한 공압구동장치 설계)

  • 문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.370-375
    • /
    • 1987
  • Damping piston with an orifice in the piston head is utilized to improve the damping characteristics of a pneumatic push-push type rotary actuator. Through linearized analysis, the optimum size of orifice, which gives maximum damping effect at the frequency where damping is desired. most, is predicted. The frequency response test of teal system were carried out to see the effects of damping piston and to obtain true optimum size of orifice by trying orifices of various size near the predicted value. During the tests, both air and helium were tried as working fluid, and a lag-lead compensation circuit was incorporated to improve system dynamics. The finally chosen orifice size is a little bigger than that predicted from analysis, however it gives high damping effects for the finally designed pneumatic system enough to have wide frequency response bandwidth.

  • PDF