• Title/Summary/Keyword: Pneumatic Device

Search Result 132, Processing Time 0.027 seconds

Performance Analysis of Pneumatic Device for Verification of Canard Deployment Performance (날개의 전개성능 확인을 위한 공압식 시험장치 성능 해석)

  • Lee, Donghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.145-154
    • /
    • 2016
  • In this paper, a pneumatic device for the deployment performance verification of canards deployed by inertia has been designed and the performance of the pneumatic device has been proven through analysis and tests. The pneumatic conveying process, orifice opening process and piston movement process of the pneumatic device were investigated by using numerical methods. The orifice diameter, pressure in a pressure tank and type of gas were regarded as the main design parameters of the pneumatic device. The error rate between analysis and test results under the same conditions was within 4 %. The accuracy of numerical methods used in this study were validated.

Study on Pedestrian Protection device in collision using Pneumatic cylinder and simple link mechanism (공압 실린더 및 단순 링크기구를 이용한 충돌 보행자 보호 장치에 관한 연구)

  • Noh, S.H.;Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.64-71
    • /
    • 2008
  • This study is on pedestrian protection device using pneumatic cylinder and simple link mechanism when vehicle collide with pedestrian. This study ensured the safety space between engine and hood after it applies to simple link mechanism and pneumatic cylinder. It can absorb the damage which measure the specific device if vehicle collide with pedestrian. Combination of simple link mechanism and pneumatic cylinder was more superior than the present pedestrian protection device. Simple link mechanism could confirm superior height and survival probability than when only cylinder operated. It also ensured enough space between engine and hood. And if a cylinder is not working because of old cylinder, poor repair or damage of accident vertical cylinder would be difficult to execute because there exists the irregular space between engine and hood. If simple link mechanism operates with only one cylinder it could ensure the regular space because simple link mechanism set up at the middle of hood. So this device could confirm high safety for pedestrian.

  • PDF

Wrist Rehabilitation Training Device Using Pneumatic Inflation and Deflation of Air Cells (에어셀을 이용한 손목 재활훈련 장치)

  • Lee, Youngjin;Jeong, Yujin;Koo, Kyo-In;Chee, Youngjoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • In this paper, we propose a wrist rehabilitation training device using pneumatic inflation and deflation of air cells. By alternating inflation and deflation of upper and lower air cells, the device makes the flexional and extensional movement for wrist rehabilitation. With the angular displacement sensor, it measures the flexion-extension angle of the wrist during the training and the bending angle is used for the automatic control of the device. Using the sensor output, the regression equation was obtained to measure the bending angle of the wrist from a wrist rehabilitation training device. The measurement error of the device was evaluated by comparing the measurement output with the angle from the photograph. The measurement error of wrist bending angle between the sensor and photo was $3.2^{\circ}$ in average. With additional test and improvement, the pneumatic wrist rehabilitation training device might be used for rehabilitation training.

Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices (릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.

Fine Gap Control System Design Using Pneumatics servo System

  • Kim, Dong-Hwan;Kim, Young-Jin;Jeong, Dae-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.2-111
    • /
    • 2001
  • The research focuses on controlling a gap to measure the surface defect in semi-conductor fabrication device. The measurement is available accompanying a near field image gap control. In this article, a pneumatic servo system is adopted for the near field gap control. The advantage of the pneumatic servo system is on the preventing the possibility of contacting the device to the wapper surface, fence arising fatal damage. Furthermore, the air from the pneumatic system blows the some particle on the wapper during controlling. The target gap is less than 20 $\mu$m and the gap should keep same amount while the device moves around the surface. The experiment by the pneumatic servo control system is done by employing a simple PID control, and the tracking performance is remarkably verified. The target gap is set from 10 $\mu$m to 100 $\mu$m ...

  • PDF

A Study on Characteristics of a Pneumatic Device for Deploying Fins (공압식 날개전개장치 특성 연구)

  • Kang, Choon-Kil;Won, Myong-Shik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.365-371
    • /
    • 2010
  • The fins of a missile which is folded within a canister are deployed according to a command during the missile flight. The aerodynamic load generated by operating environments such as missile flight speed, platform movement speed and wind acts as an anti-deploying force and prevents the fins from deploying. As the diversification of platforms and the higher speed of missiles need a larger deploying force but the space for operating the fin deploying device is getting narrower, the new design concepts are required for developing such a device. In this study, a pneumatic device for deploying missile fins is designed and its characteristics are verified through experiments and analyses.

Development of Multi Sample Array System Based on Pneumatic Valve (공압식 미세밸브를 이용한 다중유체 배열장치 개발)

  • Kim, Chul Min;Park, Seo Jung;Kim, Gyu Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.59-63
    • /
    • 2017
  • We present a multi-sample array device based on a pneumatic system. Solenoid valves were used to control a micro valve in a pneumatic system. The use of a compressor together with a vacuum pump ensured that one outlet could supply both compression and vacuum pressure. The multi-sample array device was fabricated using conventional photolithography and PDMS casting. The device was composed of a multiplexer, sample array, and rinsing. The multiplexer could control four sample solutions injecting into the sample array chamber. Sample solution not arrayed was removed by DI-water from the rinsing inlet. To prevent trapping of microbubbles in the channel during injection of sample solution into the device, surfactant was added in PDMS solution to serve as a hydrophilic surface treatment. As a result, the device could be used as a sample array for 64 cases, using four samples and three columns of three chambers.

A Study on Modeling of Pneumatic System for an IDC Device (IDC장치에 대한 공압시스템의 모델링에 관한 연구)

  • Nguyen, C.T.;Le, Q.H.;Jeong, Y.M.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.11-17
    • /
    • 2015
  • An intelligent deburring control (IDC) device is used to control the constant force for a deburring tool mounted on the end-effector of a robotic arm. This device maintains a constant contact force between the deburring tool and the workpiece in order to provide a good deburring performance. In this paper, we build a mathematical model in Matlab/Simulink to estimate the force control mechanism of the pneumatic system for the IDC device. The Simulink blocks are built for each separate part and are linked into an integrated simulation system. Such a model also relies on the effects of the flow rate through the valve, air compressibility in the cylinder, and time delay in the pressure valve. The results of the simulation are compared to a simple experiment in which convenient math modeling is performed. These results are then used to optimize the mechanical design and to develop a force control algorithm for the pneumatic cylinder.

Pressure Regulation System for Optimal Operation of the Pneumatic VAD with Bellows-Type Closed Pneumatic Circuit (벨로우즈 방식의 폐회로를 가진 공압식 심실 보조장치의 최적 작동을 위한 압력 조절 시스템)

  • Kim, Bum-Soo;Lee, Jung-Joo;Nam, Kyung-Won;Jeong, Gi-Seok;Ahn, Chi-Bum;Sun, Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.569-576
    • /
    • 2007
  • Ventricular Assist Device(VAD) has switched its goal from a short-tenn use for bridge-to-transplantation to a long-tenn use for destination therapy, With this goal, the importance of long-tenn reliability gets more interests and importances, H-VAD is an portable extracorporeal biventricular assist device, and adopts an electro-pneumatic driving mechanism. The pneumatic pressure to pump out blood is generated with compression of bellows, and is transmitted in a closed pneumatic circuit through a pneumatic line. The existing pneumatic VAD adopts a air compressor which can generate stable pressures but has defects such as a noise and a size problem. Thus, it is not suitable for being used as a portable device, These problems are covered with adopting a closed pneumatic circuit mechanism with a bellows which has a small size and small noise generation, but it has defects that improper pneumatic setting causes a failure of adequate flow generation. In this study, the pneumatic pressure regulation system is developed to cover these defects of a bellows-type pneumatic VAD. The optimal pneumatic pressure conditions according to various afterload conditions for an optimal flow rate were investigated and the afterload estimation algorithm was developed, The final pneumatic regulation system estimates a current afterload and regulate the pneumatic pressure to the optimal point at a given afterload condition. The afterload estimation algorithm showed a sufficient performance that the standard deviation of error is 8.8 mmHg, The pneumatic pressure regulation system showed a sufficient performance that the flow rate was stably governed to various afterload conditions. In a further study, if a additional sensor such as ultrasonic sensor is developed to monitor the direct movement of diaphragm in a blood pump part, the reliability would be greatly increased. Moreover, if the afterload estimation algorithm gets more accuracy, it would be also helpful to monitor the hemodynamic condition of patients.

An Experimental Study of Pneumatic Damping at the Air Chamber for OWC type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험연구)

  • CHOI Hark-Sun;LEW Jae-Moon;HONG Seok-Won;KIM Jin-Ha
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.138-144
    • /
    • 2004
  • Pneumatic damping through a orifice type duct for OWC type wave energy device is studied experimentally. Forced oscillation tests are made to measure chamber pressure and velocity of air flaw through orifice. Pneumatic damping coefficient are deducted from the experimental research, and discussion are made far the influence of frequency, heave amplitude, and orifice size. Finally two formula are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method far practical application.

  • PDF