• Title/Summary/Keyword: Plunger diameter

Search Result 17, Processing Time 0.023 seconds

Conceptual design and numerical simulations of a vertical axis water turbine used for underwater mooring platforms

  • Wenlong, Tian;Baowei, Song;Zhaoyong, Mao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.625-634
    • /
    • 2013
  • Energy is a direct restriction to the working life of an underwater mooring platform (UMP). In this paper, a vertical axis water turbine (VAWT) is designed to supply energy for UMPs. The VAWT has several controlled blades, which can be opened or closed by inside plunger pumps. Two-dimensional transient numerical studies are presented to determine the operating performance and power output of the turbine under low ocean current velocity. A standard k-${\varepsilon}$ turbulence model is used to perform the transient simulations. The influence of structural parameters, including foil section profile, foil chord length and rotor diameter, on the turbine performance are investigated over a range of tip-speed-ratios (TSRs). It was found that turbine with three unit length NACA0015 foils generated a maximum averaged coefficient of power, 0.1, at TSR = 2.

Development of DME Engine Using 3.9 Liter Diesel Engine with Mechanical Type Fuel System (3.9 리터 기계식 디젤 엔진을 이용한 DME 엔진 개발 연구)

  • JANG, JINYOUNG;WOO, YOUNGMIN;KIM, GANGCHUL;CHO, CHONGPYO;JUNG, YONGIN;KO, AHYUN;PYO, YOUNGDUG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.307-313
    • /
    • 2020
  • The 3.9 liter diesel engine with a mechanical fuel injection system was converted to di-methyl ether (DME) engine and performance optimized. In order to switch to the DME engine, the plunger of the high pressure fuel pump was replaced and the diameter of the injector nozzle was increased. Through this, the disadvantage of DME having low calorific value per volume can be compensated. To optimize the performance, the number of injector nozzle holes, injector opening pressure, and fuel injection timing were changed. As a result, the optimum number of injector nozzle holes was 5, the injector opening pressure was from 15 MPa to 18 MPa, and the injection timing was 15 crank angle degree before top dead center (CAD BTDC). The power was at the same level as the base diesel engine and nitrogen oxides (NOx) emissions could be reduced.

Development of a Shear Testing Machine for a Miniature Single Solder Ball Joint using Piezoelectric Loading Device (피에조를 이용한 초소형 단일 솔더볼 연결부의 전단 시험장치 개발)

  • Kwon, Yong-Sang;Ko, Guk-Jong;Kim, Ho-Gyeong
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.44-51
    • /
    • 2010
  • A miniature shear testing machine was designed and developed, adopting a piezoelectric actuator with mechanical advantage using 4 levers in order to investigate shear behavior of a small solder ball. The final output displacement was initially expected to be 2.88 mm without load resistance, considering the lever ratio of 24 and the piezo displacement of 0.12 mm with an exciting voltage of 10 V. However, the final plunger displacement ${\Delta}{\upsilon}$ can be expected as ${\Delta}{\upsilon}=2.88-3.04{\times}10^{-4}F$ as a function of piezoelectric force F due to the stiffness of various levers and connectors and piezo actuator. The shear behavior of lead-free solder ball in diameter of $760{\mu}m$ was successfully investigated in a speed range of 2 mm/s~0.0035 mm/s using this designed device.

An Analytical Study on the Performance Analysis of a Unit-In-jector System of a Diesel Engine

  • Kim, Chul-Ho;Lee, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.146-156
    • /
    • 2003
  • A numerical algorithm is developed to analyze the performance of a Unit-injector (UI) System for a diesel engine. The fundamental theory of the algorithm is based on the continuity equation of fluid dynamics. The loss factors that should be seriously regarded on the continuity equation are the compressibility effect of liquid fuel, the wall friction loss in high-pressure fuel lines of the system, the kinetic energy loss of fuel in the system, and the leakage of fuel out of the control volume. For an evaluation of the developed simulation algorithm, the calculation results are compared with the experimental outputs provided by the Technical Research Center of Doowon Precision Industry Co. (DPICO) ; the maximum pressure in the plunger chamber (P$\_$p/) and total amount of fuel injected into a cylinder per cycle (Q$\_$f/) at each operational condition. The result shows that the average error rate (%) of P$\_$p/ and Q$\_$f/ are 2.90% and 4.87%, respectively, in the specified operational conditions. Hence, it can be concluded that the analytical simulation algorithm developed in this study can be reasonably applied to the performance prediction of newly designed UI system.

Measurement of thermal expansion characteristic of root canal filling materials : Gutta-percha and Resilon (수 종의 근관충전재의 열팽창 특성 측정 : Gutta-percha와 Resilon)

  • Jeon, Kyung-A;Lee, In-Bog;Bae, Kwang-Shik;Lee, Woo-Cheol;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.344-351
    • /
    • 2006
  • The purpose of this study was to evaluate the thermal expansion characteristics of injectable ther-moplasticized gutta-perchas and a Resilon. The materials investigated are Obtura gutta-percha, Diadent gutta-percha, E&Q Gutta-percha Bar and Epiphany (Resilon). The temperature at the heating chamber orifice of an Obtura II syringe and the extruded gutta-percha from the tip of both 23- and 20-gauge needle was determined using a Digital thermometer. A cylindrical ceramic mold was fabricated for thermal expansion test, which was 27 mm long, with an internal bore diameter of 3 mm and an outer diameter of 10 mm. The mold was filled with each experimental material and barrel ends were closed with two ceramic plunger. The samples in ceramic molds were heated in a dilatometer over the temperature range from $25^{\circ}C$ to $75^{\circ}C$. From the change of specimen length as a function of temperature, the coefficients of thermal expansion were deter-mined. There was no statistical difference between four materials in the thermal expansion in the range from $35^{\circ}C$ to $55^{\circ}C$ (p > 0.05). However, Obtura Gutta-percha showed smaller thermal expansion than Diadent and Metadent ones from $35^{\circ}C$ to $75^{\circ}C$ (p < 0.05). The thermal expansion of Epiphany was similar to those of the other gutta-percha groups.

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.

A Study on Performance Characteristics of the Developed Fuel Pump for a Single-cylinder Four-stroke Agricultural Diesel Engine (단기통 4행정 농용 디젤기관의 개발 연료펌프 성능특성에 관한 연구)

  • Bae, Myung-whan;Lee, Sang-hae;Jung, Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.756-761
    • /
    • 2016
  • The objective of this study is to design and manufacture a fuel pump with the plunger diameter of 4 mm and stroke of 7 mm that can be mounted in a small single-cylinder four-stroke agricultural diesel engine, and to investigate the performance characteristics of the pump. The combustion pressure in a cylinder was reproduced by forming the back pressure of 1, 6, 11, 16 and 21 bar with a nitrogen gas in the home-manufactured modeling cylinder. In the experiment, the discharge pressure was measured at the spot of 1 cm away from the discharge port of a developed fuel pump. The delivery pressure and delivery flow rate were measured at the spot of 30 cm away from the discharge port of the pump, and the pump efficiency was calculated. The pump motor speed was changed from 600 to 800, 1000, 1200 and 1400 rpm. It is found that the delivery feed rate of fuel pump is increased as the rotational speed is raised, and is decreased as the back pressure, compression pressure in the cylinder, is increased. Also, the pump efficiency is reduced as the rotational speed and back pressure are increased.