• 제목/요약/키워드: Plume Impingement

검색결과 15건 처리시간 0.022초

지상시험 모델용 달착륙선 플룸 해석을 통한 추력기간의 간섭 효과 분석 (Analysis of Plume Impingement Effect of Lunar Lander)

  • 최지용;이재원;김수겸;한조영;유명종
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.254-257
    • /
    • 2011
  • 지상시험 모델용 달착륙선에 사용되는 추진시스템은 기체의 착륙 속도를 감소시키기 위한 Descent Control Thruster (DCT) 와 착륙 과정에서의 자세제어를 위한 Attitude Control Thruster (ACT) 등 두 종류의 추력기 모듈이 장착 되어 진다. 본 논문에서는 수치해석을 이용하여 착륙선의 특성상 좁은 공간에서 배치된 DCT 간에 발생 될 수 있는 플룸의 간섭 효과에 의한 영향과 지면에 근접 할 경우 발생 될 수 있는 영향에 대해 분석 하였다.

  • PDF

Engineering Applications of Jet Impingement Associated with Vertical Launching System Design

  • Hong, Seung-Kyu;Lee, Kwang-Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.67-75
    • /
    • 2002
  • In the course of missile system design, jet plume impingement is encountered in designing airframe as well as launchers, requiring careful investigation of its effect on the system. In the present paper, recent works on such topic are presented to demonstrate usefulness of CFD results in helping design the hardware. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. The main parameters are the ratio of the jet pressure to the ambient pressure and the distance between the nozzle and the wall. In the current application, the nozzle contour and the pressure ratio are held fixed, but the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. The same methodology is then applied to a complex vertical launcher system (VLS), capturing its flow structure and major design parameter. These applications involving jets are thus hoped to demonstrate the usefulness and value of CFD in designing a complex structure in the real engineering environment.

화염배출 출구면적 변화에 대한 수직발사관 내부 초음속 충돌유동의 수치적 해석 (NUMERICAL INVESTIGATIONS OF SUPERSONIC JET IMPINGEMENT ON A FLAT WALL IN A CONFINED PLENUM)

  • 이광섭;홍승규;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.281-285
    • /
    • 2005
  • Viscous solutions of supersonic jet impinging on a flat wall in a confined plenum are simulated using three-dimensional Navier-Stokes solver. A confined plenum was designed for simulating the missile launch and analyzing the behavior of the exhaust plume, which were accompanied by complex flow interactions with shock and boundary layer. Concerns of this paper are to show accurate simulation of internal flow in confined plenum and to demonstrate the jet flow structure when the jet interacts with a small opening on the side. Objectives of this numerical simulation are to understand the effect of changing the plume exit area of the plenum. Pressure and temperature rise at certain position in the plenum are traced and compared with test data.

  • PDF

Plume의 주기성이 연층형성에 미치는 영향 (A Characteristics of Smoke Layer Formation Affected Periodicity of Fire Plumes)

  • 한용식;김명배;오광철;신현동
    • 한국화재소방학회논문지
    • /
    • 제16권2호
    • /
    • pp.38-42
    • /
    • 2002
  • ON-OFF 제트를 사용하여 plume의 주기성이 천장아래에 형성되는 연층에 미치는 정성적인 영향을 파악하였다. 사용된 연기는 가열에 의해 증발된 kerosene 입자를 섞은 질소가스이다. Laser sheet에 의해 산란된 유동장의 순간 상들은 디지털 비디오 카메라에 의해 녹화되었다. ON-OFF 제트와 연속제트의 연층형성 과정을 비교하므로서 화원근처에 형성되는 연층은 plume과 천장의 주기적인 충돌에 의해 지배됨을 확인하였다. 또한 plume의 주기적인 충돌은 연층을 두껍게하며, back-flow를 일으킴을 확인하였다.

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

초음속 충돌제트에 대한 수치적 연구와 응용 (Prediction of Supersonic Jet Impingement on Flat Plate and Its Application)

  • 이광섭;홍승규;박승오;배연숙
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.225-228
    • /
    • 2002
  • Supersonic jet impingement on a flat plate has been investigated to show the flow physics for different jet heights and to demonstrate the adequacy of the characteristics-based flux-difference Wavier-Stokes code Current study also compares the steady-state solutions obtained with variable CFL number for different grid spacing with the time-accurate unsteady solutions using the inner iterations, displaying a good agreement between the two sets of numerical solutions. The unsteady nature of wall fluctuations due to bouncing of the plate shock is also uncovered for high pressure ratios. The methodology is then applied to a complex vertical launcher system where the jet plume hits the bottom wail, deflects into the plenum and eventually exits through the vertical uptake. Flow structures within vertical launcher system are captured and solutions are partially verified against the flight test data. Present jet impingement study thus shows the usefulness of CFD in designing a complex structure and predicting flow behavior within such a system.

  • PDF

Numerical Simulations of the Supersonic Jet Impingement in a Confined Plenum of Vertical Launching System

  • Lee Kwang-Seop;Lee Jin-Gyu;Hong Seung-Kyu;Ahan Chang-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.301-305
    • /
    • 2006
  • The Vertical Launching System design is especially complicated by complex flow structure in a plenum with the severe thermal state and high pressure load form the hot exhaust plume. The flow structures are numerically simulated by using the commercial code, CFD-FASTRAN with the axi-symmetrical Navier-Stokes equations. Two different cases are considered; that is, the stationary fire and the moving fire.

  • PDF

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

평판에 충돌하는 초음속 제트에 유동특성 (Characteristics of Supersonic Jet Impingement on a Flat Plate)

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.32-40
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum mean pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

충돌제트 현상을 고려한 발사체 음향하중의 경험적 예측 (Empirical Prediction of Acoustic Load of Launch Vehicle Including Jet Impingement)

  • 박서룡;이규호;공병학;강경태;장석종;이수갑
    • 한국음향학회지
    • /
    • 제33권3호
    • /
    • pp.153-162
    • /
    • 2014
  • 경험적 음향하중 예측 방법은 우주 발사체 상단 페어링에 가해지는 음향하중을 예측하는 방법으로 상사성 원리를 기반으로 한 제트 실험 데이터를 기반으로 한다. 대표적인 경험적 예측기법인 DSM-II(Distributed Source Method-II)는 제트 화염 축을 따라 소음원을 배치하는 방법이다. 그러나 이러한 경험적 예측 모델은 자유제트 실험 결과를 기반으로 하였기 때문에 실제 상황에 존재하는 충돌 소음원을 고려하기 어렵다는 한계가 있다. 따라서 본 논문에서는 기존 예측 방법에 충돌 소음원을 추가 배치함으로써 충돌 제트 효과를 반영하는 예측 방법을 제안하였다. 이를 위하여 소음원의 위치, 스펙트럼, 세기, 방향성 특징을 고려하였으며 KSR-III(Korean Sounding Rocket-III) 로켓에 대한 음향 하중 예측 결과를 기존 예측 방법 및 실험 결과와 비교하였다.