• Title/Summary/Keyword: Plate-Type Structure

Search Result 422, Processing Time 0.028 seconds

Low-Soil Disturbance In-Situ Test Method Development and Its Application : Screw Plate Loading Test (지반의 교란을 최소화 한 원위치시험법 개발 및 적용 : 스크류재하시험)

  • Lee, Yong-Su;Hwang, Woong-Ki;Choi, Yong-Kyu;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.977-986
    • /
    • 2009
  • Sampling disturbance can introduce considerable errors in the laboratory estimation of geotechnical properties of soils, and the results obtained from sophisticated sampling and careful laboratory testing are not matching with field behavior. Therefore, it is advantage to adopt in-situ testing techniques for the estimation of geotechnical parameters. Therefore, Screw plate loading test, one of new field test technologies, has been investigated in this study. This test can be utilized to find out important properties of soils such as load-displacement, elastic modulus, and shear strength. The screw plate loading test modified from the plate loading test is an experiment underneath ground by inserting a spiral type of auger screw. The structure and characteristics of the screw plate loading test device was examined in detail. In addition, The new screw plate loading test device was manufactured to refer the previous studies. The reliability of developing screw plate loading test was examined through the analysis of the laboratory test.

  • PDF

Development of LED Lamp which using Transparent Plastic Substrates (플라스틱 기판을 이용한 LED 투명 광원 구현)

  • Hong, Dae-Woon;Lee, Song-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • LEDs, compared to conventional light sources, have many advantages and their applications are rapidly expanding, especially in areas such as back-lights for LCD. In this paper, we propose a new LED lamp structure suitable for applications requiring a low power. In the proposed LED lamp structures, LED chips are mounted on a transparent polycarbonate plate, and thus photons are transmitted through the both sides of the plate. The copper layer deposited on the polycarbonate plate is patterned to form circuit patten and the chip mount pad, on which LED chips are mounted. We speculate that our proposed LED lamp structures may be used as a type of plate light source.

development of Ultrasonic waterdrop Repellers for Glass Plates (유리판용 초음파 물기 제거기 개발)

  • Jung, Yi-Bong;Lee, Young-Jin;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.12-17
    • /
    • 1997
  • In this work, we developed a new type ultrasonic dehumidifier with piezoelectric ceramics, which and efficiently repel waterdrops on outdoor glass plates exposed to raindrops. Through finite element analysis of a certain type of glass plates to analyze its dynamic behavior, the structure of the ultrasonic device we determined to get the optimal performance. A supplemental metal plate was attached to the glass plate for uniform cleaning. Based on the theoretical results, experimental samples were fabricated and evaluated with various dimensions of the glass plate and the piezoceramic vibrator. Driving circuit for the dehumidifier made use of the frequency sweeping technique to keep track of the resonant frequency of the glass plate that was variant with environmental conditions.

  • PDF

A Study on Unit Cell Design for the Performance Enhancement in PEMFC System (PEMFC 시스템의 성능향상을 위한 단위전지 설계에 관한 연구)

  • Kim Hong-Gun;Kim Yoo-Shin;Yang Sung-Mo;Nah Seok-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 2005
  • The catalyst layer design is one of the most important factors to enhance the performance of PEMFC(Proton Exchange Membrane Fuel Cell) system. The hydrophobic and ion conductive type is studied for the MEA(Membrane Electrolyte Assembly). It is found that those have some limitations for performance enhancement when they are used separately. Thus, the dual catalyst type, a mixed model, is developed for the better MEA performance. In the meantime, the design of flow field plate is subsequently carried out in order to give more enhanced output during its operation. The conductivity of flow field plate showed better performance in the case of manufactured by the more compressed process(20MPa) than by the less compressed process(10MPa). The micro-structure of the flow field plate is examined in details using SEM(Scanning Electron Microscope) to analyse the effects on the different compression processes.

Welding Distortion Characteristics of Door Openings According to Changing Shape of Stiffener (Door Opening부의 보강재 형상변화에 따른 용접 변형 특성)

  • Lee, Dong-Hun;Seo, Jung-Kwan;Yi, Myung-Su;Hyun, Chung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • Welding often results in welding distortion during the assembly process. The welding distortion of thin-plate structures such as the living quarters of ships and offshore installations is a more significant problem than in the case of thick-plate structures. Pre-stressing/heating and fairing, which are additional works to mitigate and control welding distortion, are inevitable, and the construction planning is accordingly delayed. In order to prevent welding distortion and minimize the additional work during the assembly process, increasing the plate thickness and/or the number of stiffeners may be a simple solution, but it may give rise to problems related to cost and weight. In this study, the welding distortion control effect of the type of stiffeners on the door openings of various living quarter structures was investigated using an experimental method and a finite element method. The results showed the feasibility of mitigating and controlling the welding distortion, and the optimum selection of the type of stiffeners was confirmed.

Misconceptions of the Freshmen at High School about Plate Tectonics (판구조론에 관한 고등학교 1학년 학생들의 오개념)

  • Jeong, Kyoung-Jin;Jeong, Ku-Song;Moon, Byoung-Chan;Jeong, Jin-Woo
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.762-774
    • /
    • 2007
  • The purpose of this study was to investigate misconceptions about plate tectonics which spread widely among freshmen at high school with drawing. For this, we chose 6 conceptions about plate tectonics by analysis of 7th curriculum and of 11 kinds of science textbooks. Questionnaire of drawing about plate tectonics were developed depending on them. Data was collected from 134 students who was freshmen at high school in Daegu. The result of this study was as follows. First, In structure of plate, 'upper mantle type' and 'crust type' misconceptions were more than half of the respondents. Second, In distribution of plate, 'cracked earthquake zone type' and 'earthquake frequency type' misconceptions were more than half of the respondents. Third, In formation of ocean ridge at oceanic crust- oceanic crust divergent plate boundary, 'divergence type' and 'collision type' misconceptions were more than half of the respondents. Fourth, In formation of mountain ridge at continental crust- continental crust convergent plate boundary, 'collision type' misconceptions were more than half of the respondents. Fifih, In formation of mountain ridge at oceanic crust- continental crust convergent plate boundary, 'subduction type' and 'fault type' misconceptions were more than half of the respondents. Sixth, In transform-fault at oceanic crust- oceanic crust transform-fault boundary, 'direction type' and 'section type' misconceptions were almost half of the respondents. In this study, students' drawings about plate tectonics showed similar misconceptions. This imply that drawing conceptions can be used by the strong evidence of misconceptions which spread widely among students. Furthermore, this study has a significance that this conclusion is useful to teachers as basic teaching-teaming materials of plate tectonics.

Equivalent Continuum Modeling Methods for Flat Corrugated Panels (평판형 주름판넬에 대한 등가 연속체 모델링기법)

  • 이상윤;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.43-50
    • /
    • 2000
  • The corrugated panels are the prime candidate structure for the floor, roof and wall of Korean high speed train. The equivalent continuum modeling approach panels can be used for the efficient design and evaluation of their structural characteristics. The equivalent continuum models, derived from the true complex corrugated panels, should have the same structural behavior as the original structures have. This paper briefly reviews three representative continuum modeling methods: the static analysis method and two plate-models based on modal analysis methods (MAM). These methods are evaluated through some numerical examples by comparing the natural frequencies and static deflections. It is observed that the plate-model based on Rayleigh-Ritz method seems to provide the best results when used in conjunction with the cantilever-type boundary conditions. The equivalent elastic constants of various corrugated panels, depending on the changes in their configurations, are tabulated for efficient use in structural design.

  • PDF

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

A Study on the Effect of Fatigue and Crack Propagation Behavior in Spot Weld of High Strength Steel( I ) - Experimental Examination - (고장력 강판의 점용접부에서 면내 굽힘 모멘트가 피로특성 및 균열 성장 거동에 미치는 영향에 관한 연구(I) - 실험적 검토 -)

  • 성기찬;장경복;정진우;김기순;강성수
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.112-117
    • /
    • 2001
  • The factor affecting on the fatigue strength of spot welded specimen have been studied. To analyze and predict crack initiation position and propagation directions on the spot welded area are very important for strength design of the automobile body structure. In fact, there are a various of loads in running automobile but, it is impossible to replay like an actual conditions in the laboratory. So, in this study tensile-shear type and in-plane bending type specimens were used in fatigue test and includes an analysis of fatigue crack initiation position and propagation directions about earth specimens. The results obtained in the present study are summarized as follows: 1. In tensile-shear type fatigue test, the region of fatigue crack initiation position was affected by out-of-plane bending deformation due to bending angle. 2 In in-plane bending type fatigue test, the behavior of fatigue crack initiation position and propagation derections due to angle between upper plate and lower plate was dominated by magnitude of in-plane bending moment.

  • PDF