• Title/Summary/Keyword: Plate fuel elements

Search Result 16, Processing Time 0.021 seconds

Properties of the metallic glass thin films fabricated by multicomponent single alloying target and its applications in various industrial fields

  • Shin, S.Y.;Moon, K.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.77-77
    • /
    • 2015
  • Metallic glass alloys having dense packing structure have short range ordered structure with long range homogeneity. Therefore, they can provide complete corrosion protection and unique electrical properties. Recently, metallic glass thin films have received much attention to extend its application fields combining with PVC coating technologies. The metallic glass thin films can change the surface properties of the conventional bulk materials which need anticorrosion properties. However, multi-component alloying targets are required to fabricate the metallic glass thin films because metallic glass alloys contain more than three elements. Recently, many researchers have been reported the properties of the metallic glass thin films synthesized with multi-cathode systems or amorphous target. But, it is difficult to fabricate the large sized sputtering targets for mass production equipment with high toughness and thermal stability. In this study, newly developed sputtering target with glass forming ability and the properties of the metallic glass thin films will be introduced with respect to the various application fields such as bipolar plate in PEM fuel cell and decorative coatings for electric device and construction fields.

  • PDF

Study for Failure Cases on Engine Electronic Control Computer in Liquid Petroleum Gas vehicle (액화석유가스 자동차 엔진의 전자제어 컴퓨터의 고장사례 연구)

  • Lee, Il-Kwon;Kim, Young-Gyu;Kook, Chang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.28-33
    • /
    • 2011
  • The purpose of this paper analyzes and studies to improve the failure cases on the computer that one of electronic control elements for engine in liquified petroleum gas vehicle. The first case, it certified the non-starting phenomenon of engine that it's electronic control unit didn't control the fuel for idle speed actuator because of no given action signal in slow-cut solenoid valve. The second case, it knew the bad condition phenomenon of engine and back-fire by the wire melting of ignition coil and firing of transistor being inside ECU. The third case, it certified the action stoping phenomenon of engine and malfunctioning signal for engine ECU because of leakage of current and an excess current by moisture inflowing inside ECU curcuit plate. Therefore, it is thought that will elevate the durability and reliability of engine computer throughout procure of quality.

촉매제에 의한 연탄깨스 제거에 관한 연구

  • Heo, Jin
    • Journal of the Korean Professional Engineers Association
    • /
    • v.5 no.19
    • /
    • pp.3-16
    • /
    • 1972
  • 1. Purposes and importances of the study. In gaining heating resources by combustion of briquette, which is the necessaries of every day's life, victims occur from poisonous affection of combustion gas (carbon mono-oxide) in every year and this gas attributable to increase death rate proportion to the high demand of briquette usage. It arise great problem ill point of national sanitation. Therefore, the study has a big aim to accomplish depressing CO gas or stimulating comlete combustion by both the methods of physical improvement of present combustion devices and chemical improvement by using V$_2$O$\sub$5/ catalyst to depress CO gas or fasten complete combustion Progress. Sucessful result of this study will not only to decrease the death rate but also to contribute fearless handling of briquette combustion so as to perform improving public Welfare. 2. Contents and scope of study. A. comparison of present and improved fuel hole device. B. Examination of effectness of improved elements. C. Effectness of miffed usage of catalyst. D. Comparison of Catalyst effectness. E. Examination of effectness of black slate containing V$_2$O$\sub$5/. 3. Results and recommendations of the study A. Absolute necessity of supplying secondary air by improved combustion device. B. Oxide Vanadium (V$_2$O$\sub$5/) has the greatest effectness to eliminate CO gas. C. Most effective catalyst of V$_2$O$\sub$5/ containing slate comes from "Samgoe" coal mine. D. By plastering catalyst on the cover plate of fire hole, it stimulate chemical reaction of re-combustion and preserving heat. E. Recommend to continute further precise study to practice with low-cost and handy devices to be applied the study results.

  • PDF

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

Study on the Performance of Laser Welded Joint of Aluminum Alloys for Car Body

  • Kutsuna, M.;Kitamura, S.;Shibata, K.;Sakamoto, H.;Tsushima, K.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.26-31
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired fer car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. In the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6NO 1 alloy welds. Aluminum alloy plate of 2.Omm in thickness with filler metal bar was welded by twin beam Nd: YAG laser facility (total power: 5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 1/min was used. The defocusing distance is kept at 0 mm. At travel speeds off 3 to 9 and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.