• Title/Summary/Keyword: Plate fuel assembly

Search Result 53, Processing Time 0.032 seconds

Development of a High Efficiency Polymer Electrolyte Membrane Fuel Cell Stack under Pressurized Operating Conditions (고효율 가압형 고분자전해질 연료전지 셀스택 개발)

  • Han, In-Su;Seo, Hakyu;Jung, Jeehoon;Kim, Minsung;Shin, Hyunkhil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.1-125.1
    • /
    • 2010
  • A high efficiency polymer electrolyte membrane (PEM) fuel cell stack was developed for pressurized pure hydrogen and oxygen supplying conditions. The design objective for the cell stack was to maximize the electric efficiency and to minimize exhaust-gas emissions from it simultaneously. To achieve this objective, the cell stack was designed to use pure hydrogen and oxygen as fuel and oxidant, respectively, and to be operated under high gas inlet pressures and in a stage-wise dead-end operation mode. Major components constituting the cell stack, such as membrane electrode assembly, bipolar-plate, and gasket, have been developed to meet a target durability even in severe operating conditions: high gas inlet pressures and usage of pure oxygen. A high-power fuel cell stack was assembled using these components to verify the performance. The cell stack showed a good performance in terms of the efficiency and maximum power output.

  • PDF

Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly ($17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석)

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2010
  • Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20~45 % and 30~45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.

Thermal and Flow Analysis in a Proton Exchange Membrane Fuel Cell

  • Jung, Hye-Mi;Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1358-1370
    • /
    • 2003
  • The effects of anode, cathode, and cooling channels for a Proton Exchange Membrane Fuel Cell (PEMFC) on flow fields have been investigated numerically. Continuous open-faced fluid flow channels formed in the surface of the bipolar plates traverse the central area of the plate surface in a plurality of passes such as a serpentine manner. The pressure distributions and velocity profiles of the hydrogen, air and water channels on bipolar plates of the PEMFC are analyzed using a two-dimensional simulation. The conservation equations of mass, momentum, and energy in the three-dimensional flow solver are modified to include electro-chemical characteristics of the fuel cell. In our three-dimensional numerical simulations, the operation of electro-chemical in Membrane Electrolyte Assembly (MEA) is assumed to be steady-state, involving multi-species. Supplied gases are consumed by chemical reaction. The distributions of oxygen and hydrogen concentration with constant humidity are calculated. The concentration of hydrogen is the highest at the center region of the active area, while the concentration of oxygen is the highest at the inlet region. The flow and thermal profiles are evaluated to determine the flow patterns of gas supplied and cooling plates for an optimal fuel cell stack design.

A Study on Unit Cell Design for the Performance Enhancement in PEMFC System (PEMFC 시스템의 성능향상을 위한 단위전지 설계에 관한 연구)

  • Kim Hong-Gun;Kim Yoo-Shin;Yang Sung-Mo;Nah Seok-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 2005
  • The catalyst layer design is one of the most important factors to enhance the performance of PEMFC(Proton Exchange Membrane Fuel Cell) system. The hydrophobic and ion conductive type is studied for the MEA(Membrane Electrolyte Assembly). It is found that those have some limitations for performance enhancement when they are used separately. Thus, the dual catalyst type, a mixed model, is developed for the better MEA performance. In the meantime, the design of flow field plate is subsequently carried out in order to give more enhanced output during its operation. The conductivity of flow field plate showed better performance in the case of manufactured by the more compressed process(20MPa) than by the less compressed process(10MPa). The micro-structure of the flow field plate is examined in details using SEM(Scanning Electron Microscope) to analyse the effects on the different compression processes.

Cross Flow Characteristics of the Core Simulator in SMART Reactor Flow Distribution Test Facility (SMART 유동분포시험장치 노심모의기에서의 횡방향 유동 특성)

  • Yoon, Jung;Kim, Young-In;Chung, Young-Jong;Lee, Won-Jae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • To identify the flow characteristics of the SMART reactor, a flow distribution model test and a numerical simulation are performed in KAERI. Among several part of the SMART reactor, the fuel assemblies are simulated using simulators because of the complexity. The geometries of the core in the SMART reactor and simulator are different, but some similarities are maintained such as the ratio of pressure drop in the vertical and cross directions. There are cross flow holes in each core simulator to reproduce the cross flow of SMART fuel assemblies. To know the flow characteristics of the cross flow, numerical analysis is performed. As the cross flow area is decreased, the pressure drop between inlet and outlet is decreased. Also, when the flow imbalance between two core simulators is constant, the cross flow area does not significantly affect the cross flow.

Self-pressurization Effect and PEMFC Performance Improvement Using Metal Foam Compression (금속 폼 압축에 의한 자가 가압 효과 및 PEMFC 성능 개선)

  • Kim, Hyeonwoo;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.618-623
    • /
    • 2022
  • The bipolar plate is a key component of the polymer electrolyte membrane fuel cell (PEMFC) that transfers reactants and electrons, discharges water and heat as by-products, and serves as a mechanical support for the membrane electrode assembly (MEA). Therefore, the flow field structure of the bipolar plate plays an important role in improving fuel cell performance. In this study, PEMFC performance was investigated with copper foams with different compressibility ratios applied to cathode bipolar plates using a 25 cm2 unit cell. The total resistance decreased as the compressibility ratio of the metal foams increased, and, in particular, the charge transfer and mass transfer resistance were significantly improved compared to the serpentine flow field, lowering voltage loss in medium and high current density region. In the case of pressurized air reactant flow with serpentine structure, fuel cell performance was similar to that of a compressed metal foam flow field (S3) up to the medium current density region, but low performance appeared in the high current density region due to flow field structure limitations.

A Study on Manufacture and Design of Low Voltage.Low Electric Power System by PEMFC Single cell (PEMFC 단위 셀의 제작 및 저전압.저전력 시스템 설계에 관한 연구)

  • Ryu, Yun-Sim;Ahn, Ho-Gyun;Seo, Jung-Rang;Kim, Sung-Hoon;Lee, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.193-195
    • /
    • 2007
  • These days, to change the new & renewable energy change the subject because environmental pollution and exhausted fossil power. The most notable Fuel cells by one of the new & renewable energies are one of very useful power conversion sources. Their advantages are low environmental pollution, highly efficient power generation, diversity of fuels (natural gas, LPG, methanol and naphtha), and reusability of exhaust heat, modularity, and faster installation. PEMFC by one of the Fuel Cells is the energy of new technology which is produced by the electric chemical reaction directly. The essential composition elements of PEMFC stack are membrane electrode assembly (MEA), catalyst, Bipolar Plate. Under the this study, know-how is manufacturing single cell of PEMFC and Study design of Low Voltage, Low Electric Power System by PEMFC Single Cell.

  • PDF

Fabrication Assessment Method for Dimensional Quality Management of Curved Plates in Shipbuilding and Offshore Structures (선박 및 해양 구조물 곡부재 치수 품질 관리를 위한 가공완성도 평가)

  • Kwon, Ki-Youn;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.106-115
    • /
    • 2018
  • The forward and afterward parts of ships and offshore structures are designed to improve the fuel consumption performance. These are made of curved plates with a large thickness. If a fabricated curved plate has some dimensional errors, a lot of additional cost is incurred in the assembly process. Thus, an accurate dimensional assessment is very important for fabrication. In this paper, we propose an assessment method for the dimensional quality management of curved plates. This can be applied to data measured using a variety of three-dimensional instruments, with boundary measurement points automatically classified and sorted to create a measurement surface. The assessment is evaluated after matching the CAD surface and the measured surface considering constrained conditions. The fabrication assessment is evaluated as a probability of how much the tolerance is satisfied.

Numerical Analysis of the Effect of Hole Size Change in Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution (하부지지구조물 바닥판 구멍크기 변경이 원자로 노심 입구 유량분포에 미치는 영향에 관한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.905-911
    • /
    • 2015
  • In this study, to examine the effect of a hole size change(smaller hole diameter) in the outer region of the lower-support-structure-bottom plate(LSSBP) on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.15. The predicted results were compared with those of the original LSSBP. Through these comparisons, it was concluded that a more uniform distribution of the mass flow rate at the core-inlet plane could be obtained by reducing the hole size in the outer region of the LSSBP. Therefore, from the nuclear regulatory perspective, design change of the hole pattern in the outer region of the LSSBP may be desirable in terms of improving both the mechanical integrity of the fuel assembly and the core thermal margin.

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF