• Title/Summary/Keyword: Plate forming

검색결과 435건 처리시간 0.027초

Development of stress correction formulae for heat formed steel plates

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.141-152
    • /
    • 2018
  • The heating process such as line heating, triangular heating and so on is widely used in plate forming of shell plates found in bow and stern area of outer shell in a ship. Local shrinkage during heating process is main physical phenomenon used in plate forming process. As it is well appreciated, the heated plate undergoes the change in material and mechanical properties around heated area due to the harsh thermal process. It is, therefore, important to investigate the changes of physical and mechanical properties due to heating process in order to use them plate the design stage of shell plates. This study is concerned with the development of formula of plastic hardening constitutive equation for steel plate on which line heating is applied. In this study the stress correction formula for the heated plate has been developed based on the numerical simulation of tension test with varying plate thickness and heating speed through the regression analysis of multiple variable case. It has been seen the developed formula shows very good agreement with results of numerical simulation. This paper ends with usefulness of the present formula in examining the structural characteristic of ship's hull.

A New Algorithm to Determine Heating Lines for Plate Forming by Line Heating Method (선상가열법에 의한 강판 가공의 가열선 결정 알고리즘)

  • Chang-Doo Jang;Sung-Choon Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제35권2호
    • /
    • pp.104-113
    • /
    • 1998
  • The line heating method is a popular technique used to form ship hull in shipyards. In order to promote shipbuilding productivity, some researchers have made progress in their studies on automatic fabrication system for plate forming. These researches have, however, focused on heat-induced plate deformation with particular mechanical modelings, and do not yet propose the heating paths applicable to actual plate forming process. In this paper, a new algorithm to determine heating lines is developed to simulate the line heating process. The important feature of this algorithm is that it calculates principal curvatures of deflection difference surface which represents difference between target surface and surface in fabrication. Several trials to typical surface types show its usefulness and good applicability to tactical use.

  • PDF

Development of Formulas to Predict Deformations in Plate by Line Heating Method (선상가열법에 의한 강판의 변형 예측식 개발)

  • Lee, Joo-Sung;Lee, Joung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.83-87
    • /
    • 2008
  • Although a great deal of research has been carried out to solve the plate forming problem and to improve the effectiveness and productivity of the plate forming process, no practical way of automating the plate forming process has been proposed yet. Since characteristics of heating machines may vary, it is necessary to investigate the thermal deformation characteristics of the heating machine that will be used in the automation system its characteristics may be modified as new information about thermal deformation by heating becomes available. In this paper, experiments for line heating have been carried out to calculate the formula of predicting thermal deformation due to line heating with varying affecting parameters, and numerical study has been carried out to produce data beyond the range where a line heating test is impractical. Formulas of predicting transverse distortion and shrinkage have been proposed and derived, based on the present experimental and numerical works. This paper also illustrates how the formula has been modified as new experimental data are added.

Effect of rubber forming process parameters on channel depth of metallic bipolar plates

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제20권3호
    • /
    • pp.221-232
    • /
    • 2017
  • In this study, bipolar plates in fuel cells are formed using rubber forming process. The effects of important parameters in rubber forming such as hardness and thickness of rubber pad, speed and pressure of punch that compress blank, and physical property of materials on the channel depth were analyzed. In the soft material sheet Al1050, deeper channels are formed than in materials STS304 and Ti-G5. Formed channel depth was increased when hardness of rubber pad was lower, thickness of rubber pad was high, and speed and pressure of punch were high. It was found the deepest channel was achieved when forming process condition was set with punch speed and pressure at 30 mm/s and 55 MPa, respectively using rubber pad having hardness Shore A 20 and thickness 60 mm. The channel depths of bipolar plates formed with Al1050, STS304 and Ti-G5 under the above process condition were 0.453, 0.307, and 0.270 mm, respectively. There were no defects such as wrinkle, distortion, and crack found from formed bipolar plates.

Fundamental investigation on process design for manufacturing of doubly curved plates using line array roll set (선형 배열 롤 셋을 이용한 이중 곡판 제작을 위한 공정 설계에 관한 기초 연구)

  • Shim, D.S.;Yang, D.Y.;Roh, H.J.;Kim, K.H.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.400-403
    • /
    • 2008
  • For the effective manufacture of doubly curved metal plates, a line array roll set (LARS) process is proposed. The suggested process utilizes a pair of upper and lower symmetric roll assemblies. In the process, the initial plate is progressed into the final shape in a stepwise or pathwise manner according to the basic principle of the incremental forming process. The deformation proceeds simultaneously in the longitudinal and transverse directions. Moreover, there is a close correlation between the deformation in the longitudinal direction and that in the transverse direction of the plates. Therefore, the finally formed shape in the incremental forming process is strongly dependent upon process conditions, such as the forming path and the forming increment. The manufacturing of arbitrary doubly curved plates with various curvatures is not an easy task because of such complicated behaviors of the plate; thus, the forming schedules for the desired shape should be carefully and accurately designed. In this study, several experiments with the LARS system were carried out for the fundamental investigation on process design for manufacturing of doubly curved plates.

  • PDF

Prediction of Heating-line Positions for Line Heating Process by Using a Neural Network (신경회로망을 이용한 선상가열공정의 가열선 위치선정에 관한 연구)

  • 손광재;양영수;배강열
    • Journal of Welding and Joining
    • /
    • 제21권4호
    • /
    • pp.31-38
    • /
    • 2003
  • Line heating is an effective and economical process for forming flat metal plates into three-dimensional shapes for plating of ships. Because the nature of the line heating process is a transient thermal process, followed by a thermo elastic plastic stress field, predicting deformed shapes of plate is very difficult and complex problem. In this paper, neural network model o3r solving the inverse problem of metal forming is proposed. The backpropagation neural network systems for determining line-heating positions from object shape of plate are reported in this paper. Two cases of the network are constructed-the first case has 18 lines which have different positions and directions and the second case has 10 parallel heating lines. The input data are vertical displacements of plate and the output data are selected heating lines. The train sets of neural network are obtained by using an analytical solution that predicts plate deformations in line heating process. This method shows the feasibility that the neural network can be used to determine the heating-line positions in line heating process.

Development and Estimation of Hinge Belt Plate in Combination Type (복합형 힌지 벨트 플레이트의 개발과 평가)

  • Ha, Man-Kyung;Jun, Jae-Uhk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제5권4호
    • /
    • pp.86-92
    • /
    • 2006
  • In the automobile and machine industry, Forming type conveyer system have problems in that hinge belt plate are stretched, produce a noise and get abrasion. they make the machine get out of order. we make hinge belt thicker for reducing the trouble. Thick hinge belt was stronger. But it was heavier. And it was hard to come up with buyer's expectations because the mold which makes the hinge belt have limit of strength, life cycle and size. So, we developed the machine welded each part of hinge belt plate.

  • PDF

A study on the thermal deformation characteristics of steel plates due to multi-line heating

  • Lee, Joo-Sung;Lee, Sang-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권1호
    • /
    • pp.48-59
    • /
    • 2018
  • This paper is mainly concerned with developing the formulae of predicting thermal deformation of steel plate due to multi-line heating. By investigating the results of line heating test and numerical analysis, reasonable heat flux model has been defined. Formulae of predicting the transverse shrinkage and the angular distortion as the dominant thermal deformation types in plate forming by line heating have been derived based on the results of line heating test and numerical analysis with varying plate thickness, heating speed and distance between torches. This paper illustrates how the derived formulae are used in investigating the effect of multi-line heating upon the thermal deformation and how they can be used in defining the limit distance with that there is no interacted effect between torches. This paper ends with describing the extension of the present study.

A Study on the Concave Type Hull Plate Forming using Induction Heating System (고주파 유도가열을 이용한 오목 곡면 곡가공에 관한 연구)

  • Hyun, Chung Min;Kim, Dae Kyung;Mun, Seung Hwan;Park, Jung Seo;Dohr, Kyu Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제56권2호
    • /
    • pp.128-134
    • /
    • 2019
  • In shipbuilding, accurate fabrication of curved hull plates is one of the most important steps, since the shape of ship hull, which is very critical in the overall performance of a ship, is a collection of such plates. The curved hull plates forming process requires a significant amount of time by skilled workers in shipbuilding. In general, the workers cause thermal distortion in the plate and forming initial shape using gas heat source. So shipbuilding companies need skilled workers who have long experience. To solve the problem, a lot of researchers tried to develop automation system for curved hull plates. In this paper, we propose automatic heating system with gantry robot, high frequency induction heater to replace the gas heat source and automatic measurement system. We apply the system to forming concave type plate that is actually used in ship manufacturing. In addition, a system was developed to automatically generate heating information, such as the heating location and the heating speed, for actual heating process. Then the system was applied to the actual heating material. It is shown that the proposed triangle heating pattern makes desired concave shape successfully. The induction heating system showed that it can be used for automation system of curved hull plates forming process replacing gas heat source.