• Title/Summary/Keyword: Plate equation

Search Result 808, Processing Time 0.025 seconds

Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT

  • Mohammadimehr, Mehdi;Rostami, Rasoul;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.513-543
    • /
    • 2016
  • Third order shear deformation theory is used to evaluate electro-elastic solution of a sandwich plate with considering functionally graded (FG) core and composite face sheets made of piezoelectric layers. The plate is resting on the Pasternak foundation and subjected to normal pressure. Short circuited condition is applied on the top and bottom of piezoelectric layers. The governing differential equations of the system can be derived using Hamilton's principle and Maxwell's equation. The Navier's type solution for a sandwich rectangular thick plate with all edges simply supported is used. The numerical results are presented in terms of varying the parameters of the problem such as two elastic foundation parameters, thickness ratio ($h_p/2h$), and power law index on the dimensionless deflection, critical buckling load, electric potential function, and the natural frequency of sandwich rectangular thick plate. The results show that the dimensionless natural frequency and critical buckling load diminish with an increase in the power law index, and vice versa for dimensionless deflection and electrical potential function, because of the sandwich thick plate with considering FG core becomes more flexible; while these results are reverse for thickness ratio.

Liquid boundary effect on free vibration of an annular plate coupled with a liquid

  • Kyeong-Hoon Jeong
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.127-149
    • /
    • 2023
  • A theoretical method is developed to analyze the free vibration of an elastic annular plate in contact with an ideal liquid. The displacement potential functions of the contained liquid are expressed as a combination of the Bessel functions that satisfy the Laplace equation and the liquid boundary conditions. The compatibility condition along the interface between the annular plate and the contained liquid is taken into account to consider the fluid-structure coupling. The dynamic displacement of the wet annular plate is assumed to be a combination of dry eigenfunctions, allowing for prediction of the natural frequencies using the Rayleigh-Ritz method. The study investigates the effect of radial liquid boundary conditions on the natural frequencies of the wet annular plate, considering four types of liquid bounding: outer container bounded, outer and inner bounded, inner bounded, and radially unbounded. The proposed theoretical method is validated by comparing the predicted wet natural frequencies with those obtained from finite element analysis, showing excellent accuracy. The results indicate that the radial liquid bounding effect on the natural frequencies is negligible for the axisymmetric vibrational mode, but relatively significant for the mode with one nodal diameter (n =1) and no nodal circle (m' = 0). Furthermore, the study reveals that the wet natural frequencies are the largest for the plate with an inner bounded cylinder among the radial liquid boundary cases, regardless of the vibration mode.

Comparison and Analysis of Bearing Capacity Calculation Results for Shallow Foundation (얕은 기초의 지지력 산정결과를 이용한 비교 및 분석에 관한 연구)

  • Chun, Byung-Sik;Lee, Jong-Hun;Kim, Jong-Hwan;Kong, Jin-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1172-1177
    • /
    • 2008
  • The best way to gain optimal results on the bearing capacity is to perform the plate bearing test on field but it is not always possible. In the case of not performing the bearing test but estimating bearing capacity equations, it is not yet determined what equation is appliable. In this paper the results of bearing capacity equation and the loading tests of 12 samples were compared and what the one is more reliable than others was verified. The comparison showed that the range of the values using Hansen's equation was 0.67 and 1.44 times of the measured, that of Vesic's was 0.71 and 1.27, that of Meyerhof is 0.69 and 1.1, and that of Terzaghi was 0.87 and 1.57.

  • PDF

Study on Bursting Stress in Anchorage Zone of Prestressed Concrete Using Circular Anchorages (원형 정착구를 적용한 프리스트레스트 콘크리트 정착구역의 파열력에 관한 연구)

  • Choi, Kyu-Hyung;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.3-12
    • /
    • 2015
  • Bursting stress in anchorage zone of post tension girder can be estimated based on Guyon's equation. The major parameters in calculating bursting stress are prestressing force and the distance ratio between concrete edge and anchorage plate. Although Guyon's equation can be applied to calculate bursting stress for rectangular typed as well as circular typed plate, there is some limitation of accuracy due to 2 dimensional analysis. Therefore this study is proposed to suggest a bursting stress equation based on 3 dimensional finite element method.

A Method of Moments Approach for Laminar Boundary Layer Flows

  • Kinaci, Omer Kemal;Usta, Onur
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.111-115
    • /
    • 2013
  • Blasius equation describes the boundary layer formed over a flat plate inside a fluid and this equation is solved numerically by the method of moments which is a type of weighted residual methods. Compared to the traditionally used Runge - Kutta Method, Method of Moments propose a direct solution to Blasius Equation which makes it easier to solve. The obtained solutions show good agreement with the results found in literature and this study aims to demonstrate the power of the method.

Evaluation of Spreading Thermal Resistance in Symmetrical Four-Heat Generating Electronic Components (4개 대칭배열 발열 전자소자에서의 확산 열저항 산정)

  • Kim Yun-Ho;Kim Seo-Young;Rhee Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.664-671
    • /
    • 2006
  • We propose the correlation to predict the spreading thermal resistance on a plate with symmetrical four heat sources. The correlation transforms four heat sources to a single equivalent heat source and then the spreading thermal resistance can be obtained with the existing equation for a single heat source. When the four heat sources are mounted on a square base plate, the correlation is expressed as a function of the heat source size, the length of base plate, the plate thermal conductivity and the distance between heat sources. Compared to the results of three-dimensional numerical analysis, the spreading thermal resistance by the proposed correlation is in good agreement within 10 percent accuracy.

Numerical simulation of hypervelocity impacts on laminated composite plate targets using SPH method (SPH 기법을 이용한 복합 적층판의 초고속 충돌 해석)

  • Lee, Jae-Hoon;Seo, Song-Won;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.331-336
    • /
    • 2004
  • This paper is concerned with numerical simulation of hypervelocity impacts(HVIs) of a projectile on laminated composite plate targets using SPH method. A one-parameter visco-plasticity model and damage model is used to describe the HVIs response of composite materials. The numerical simulation was carried out for a steel projectile striking to aluminum plate targets and for an aluminum projectile striking to laminated graphite/epoxy (Gr/Ep) composite plate targets. Through the numerical simulation, comparison with the HVIs response of isotropic materials and composite materials is discussed.

  • PDF

Two-dimensional Unsteady Thermal Stresses in a partially heated infinite FGM Plate (부분 가열된 무한 경사기능재료 판의 2차원 비정상 열응력)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • A Green's function approach based on the laminate theory is adopted for solving the two-dimensional unsteady temperature field and the associated thermal stresses in an infinite plate made of functionally graded material (FGM). All material properties are assumed to depend only on the coordinate x (perpendicular to the surface). The unsteady heat conduction equation is formulated into an eigenvalue problem by making use of the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the two-dimensional unsteady temperature. The associated thermoelastic field is analyzed by making use of the thermal stress function. Numerical analysis for a FGM plate is carried out and effects of material properties on unsteady thermoelastic behaviors are discussed.

  • PDF

MATHEMATICAL IMAGE PROCESSING FOR AUTOMATIC NUMBER PLATE RECOGNITION SYSTEM

  • Kim, Sun-Hee;Oh, Seung-Mi;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.57-66
    • /
    • 2010
  • In this paper, we develop the Automatic Number Plate Recognition (ANPR) System. ANPR is generally composed of the following four steps: i) The acquisition of the image; ii) The extraction of the region of the number plate; iii) The partition of the number and iv) The recognition. The second and third steps incorporate image processing technique. We propose to resolve this by using Partial Differential Equation(PDE) based segmentation method. This method is computationally efficient and robust. Results indicate that our methods are capable to recognize the plate number on difficult situations.

A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces

  • Ahn, Namshik;Lee, Kangsu
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.501-515
    • /
    • 2011
  • Sandwich elements have high flexural rigidity and high strength per density. They also have excellent anti-vibration and anti-noise characteristics. Therefore, they are used for structures of airplanes and high speed ships that must be light, as well as strong. In this paper, the Reissner-Mindlin's plate theory is studied from a Hamilton's principle point of view. This theory is modified to include the influence of shear deformation and rotary inertia, and the equation of motion is derived using energy relationships. The theory is applied to a rectangular sandwich model which has isotropic, asymmetrical faces and an isotropic core. Investigations are conducted for five different plate thicknesses. These plates are identical to the sandwich plates currently used in various structural elements of surface effect ships (SES). The boundary conditions are set to simple supports and fixed supports. The elastic and shear moduli are obtained from the four-point bending tests on the sandwich beams.