References
- I. Tani, History of boundary-layer theory, Ann. Rev. Fluid Mech. 9 (1977) 87-111. https://doi.org/10.1146/annurev.fl.09.010177.000511
- H. Aminikhah, An analytical approximation for solving nonlinear Blasius equation by NHPM, Numerical Methods for Partial Differential Equations, 26 (6) (2010) 1291-1299
- J. H. He, Approximate analytical solution of Blasius' equation, Communications in Nonlinear Science & Numerical Simulation, 4 (1) (1999) 75-78 https://doi.org/10.1016/S1007-5704(99)90063-1
- B. K. Datta, Analytic solution for the Blasius equation, Indian Journal of Pure and Applied Mathematics, 34 (2) (2003) 237-240
- L. Wang, A new algorithm for solving classical Blasius equation, Appl. Math. Comput. 157 (2004) 1-9 https://doi.org/10.1016/j.amc.2003.06.011
- L. Howarth, On the solution of the laminar boundary layer equations, Proc. Roy. Soc. London A 164 (1938) 547-579. https://doi.org/10.1098/rspa.1938.0037
- U. Filobello-Nino, H. Vazquez-Leal, R. Castaneda- Sheissa, A. Yildirim, L. Hernandez- Martinez, D. Pereyra-Diaz, A. Perez-Sesma, C Hoyos-Reyes, An approximate solution of Blasius equation by using HPM method, Asian Journal of Mathematics & Statistics, 5 (2) (2012) 50-59 https://doi.org/10.3923/ajms.2012.50.59
- K. Parand, M. Dehghan, A. Pirkhedri, Sinccollocation method for solving the Blasius equation, Physics Letters A, 373 (44) (2009) 4060-4065 https://doi.org/10.1016/j.physleta.2009.09.005
- J. H. He, A simple perturbation approach to Blasius equation, Applied Mathematics and Computation, 140 (2-3) (2003) 217-222 https://doi.org/10.1016/S0096-3003(02)00189-3
- M. Benlahsen, M. Guedda, R. Kersner, The generalized Blasius equation revisited, Mathematical and Computer Modelling, 47 (9-10) (2008) 1063-1076 https://doi.org/10.1016/j.mcm.2007.06.019
- R. Cortell, Numerical solutions of the classical Blasius flat-plate problem, Appl. Math. Comput. 170 (1) (2005) 706-710 https://doi.org/10.1016/j.amc.2004.12.037
- T. Fang, F. Guob, C. F. Leea, A note on the extended Blasius equation, Applied Mathematics Letters, 19 (7) (2006) 613-617 https://doi.org/10.1016/j.aml.2005.08.010
- Hartree, D. R., On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer, Proc. Cambridge Philos. Society 33 (1937) 223-239. https://doi.org/10.1017/S0305004100019575
- G.V. Rao, Least square and galerkin finite element solution of flow past a flat plate, Int. J. for Numer. Meth. Engng. 11 (1) (1975) 185-190.
- A. Asaithambi, A finite-difference method for the Falkner Skan equation, Appl. Math. Comput. 92 (1998) 135-141. https://doi.org/10.1016/S0377-0427(97)00235-5
- A. Asaithambi, A second-order finitedifference method for the Falkner Skan equation, Appl. Math. Comput. 156 (2004) 779-786. https://doi.org/10.1016/j.amc.2003.06.020
- A. Asaithambi, Numerical solution of the Falkner- Skan equation using piecewise linear equation, Appl. Math. Comput. 159 (2004) 267-273. https://doi.org/10.1016/j.amc.2003.10.047
- A. Asaithambi, A solution of the Falkner-Skan equation by recursive Taylor coefficients, Journal of Computational and Applied Mathematics, 176 (2005) 203-214. https://doi.org/10.1016/j.cam.2004.07.013
- H. Schlichting, K. Gersten, Boundary Layer Theory, eighth rev.ed., McGraw-Hill, New York, 1999.
- B. A. Finlayson, Nonlinear Analysis in Chemical Engineering, McGraw Hill, New York, 1980