• Title/Summary/Keyword: Plate Spring

Search Result 240, Processing Time 0.027 seconds

A Study on the Radiated Noise of a Shaft-Plate System By an Axial Force (축방향력에 의한 축 플레이트계의 방사소음에 관한 연구)

  • ;Grosh, Karl
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.524-529
    • /
    • 1998
  • Analogous problem for a gear dynamics where helical gears excite logitudinal forces in the shaft is studied. These shaft forces excite the supporting gear housing through bearing, causing structural vibration. In this study, shaft is modeled as a rod, and bearing is modeled by a massless spring. A simple model for gear housing is a clamped circular plate. To model this force transmission, the transfer functions from the shaft to a clamped circular plate are analytically derived by using the spectral method and four-pole parameter. Finally, radiated noise is computed, using the acoustic relations due to plate surface vibration.

Fabrication and Experiment of Micromirror with Aluminum Pin-joint (알루미늄 핀-조인트를 사용한 마이크로 미러의 제작과 측정)

  • Ji, Chang-Hyeon;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.487-494
    • /
    • 2000
  • This paper describes the design, fabrication and experiments of surface-micromachined aluminum micromirror array with hidden pin-joints. Instead of the conventional elastic spring components as connection between mirror plate and supporting structure, we used pin-joint composed of pin and staples to support the mirror plate. The placement of pin-joint under the mirror plate makes large active surface area possible. These flexureless micromirrors are driven by electrostatic force. As the mirror plate has discrete deflection angles, the device can be ap;lied to adaptive optics and digitally-operating optical applications. Four-level metal structural layers and semi-cured photoresist sacrificial layers were used in the fabrication process and sacrificial layers were removed by oxygen plasma ashing. Static characteristics of fabricated samples were measured and compared with modeling results.

  • PDF

Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.623-631
    • /
    • 2017
  • Present paper deals with the temperature-dependent buckling analysis of sandwich nanocomposite plates resting on elastic medium subjected to magnetic field. The lamina layers are reinforced with carbon nanotubes (CNTs) as uniform and functionally graded (FG). The elastic medium is considered as orthotropic Pasternak foundation with considering the effects of thermal loading on the spring and shear constants of medium. Mixture rule is utilized for obtaining the effective material properties of each layer. Adopting the Reddy shear deformation plate theory, the governing equations are derived based on energy method and Hamilton's principle. The buckling load of the structure is calculated with the Navier's method for the simply supported sandwich nanocomposite plates. Parametric study is conducted on the combined effects of the volume percent and distribution types of the CNTs, temperature change, elastic medium, magnetic field and geometrical parameters of the plates on the buckling load of the sandwich structure. The results show that FGX distribution of the CNTs leads to higher stiffness and consequently higher buckling load. In addition, considering the magnetic field increases the buckling load of the sandwich nanocomposite plate.

A Study on the Brazier Effect of Laminated Plate Structures Having Different Material Constants for Each Element (재료상수가 상이한 요소로 이루어진 적층평판형구조물의 Brazier효과에 관한 연구)

  • 김재열;한상을;권택진
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.199-207
    • /
    • 1996
  • When an initially straight thin cylinder is bent, there is a tendency for the cross section to flatten. This phenomenon was investigated by L.G. Brazier in 1927 and is called "Brazier Effect" or "Brazier Theory". The main characteristic is the reduction of carrying capacity due to the decrease of bending stiffness by shortening of thickness with the increase of external load. And the relationship of curvature-bending moment becomes a soft spring type as shown in Fig.2. In this paper, the Brazier theory on plate type structures is investigated from the following view points : (1) What is the Brazier effect? (2) the reason of the occurrence of the Brazier effect in plate type structures by using beam model and (3) factors which cause the brazier effect.

  • PDF

A Study on the Structure Analysis Optimization of Die Cam Drive Considering the Thin Plate Hardening (박판판재 경화를 고려한 다이 캠 드라이브의 구조해석 최적화에 대한연구)

  • Lee, Jong-Bae;Kim, Seon-Sam;Woo, Chang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5769-5777
    • /
    • 2015
  • According to the forming or bending deformation in the press die, the thin plate occurs a work-hardening, the sheet hardening and cam unit's deformation causes incomplete forming during the cam molding process by the reacting spring forces. This study treated the input parameters of the stress and strain as given properties and also used Cam forming pressure considering the sheet hardening in the forming process of the aluminum sheet. The Hyperstudy are operated be linked with the Abaqus of the finite element analysis tool and the shape of Cam were carried out with non-linear shape optimization analysis. As a result removing the deformation of plate, the cam shape were optimized under conditions reduced deformation, having a minimum stress range and the minimum deformation. Therefore, a stress-strain curve and a normal distribution of stress-thickness can be obtained and optimization could be obtained for the shape of the stress and strain on the die plate hardened cam considering the thickness and reaction force of gas spring as iteration process.

Novel Fabrication Process of Vertical Spring for Micro Mirror

  • Lim, Tae-Sun;Shin, jong-Woo;Kim, Yong-Kweon;Park, Bumkyoo
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.245-250
    • /
    • 1998
  • Novel fabrication process of vertical spring for micro mirror array is proposed. The proposed fabrication process adopts a shadow evaporation process using shielding screen structure on top of the sacrificial layer. The 50${\times}$50 micro mirror arrays are fabricated using the proposed process and ceramic packaged. The static and dynamic characteristics of mirror are measured. The mirror plate touches substrate at 16V and the response time of about 16.8 ${\mu}\textrm{s}$. The resonant frequency of mirror is 16kHz. The spring thickness is calculated from static characteristic to be 1075${\AA}$.

  • PDF

Model test of an inverted conical cylinder floating offshore wind turbine moored by a spring-tensioned-leg

  • Shin, Hyunkyoung;Cho, Sangrai;Jung, Kwangjin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • A new 5-MW floating offshore wind turbine moored by a spring-tensioned-leg was proposed for installation in about 50m water depth. Its substructure is a platform of the inverted conical cylinder type with massive ballast weight plate at the bottom. A 1:128 scale model was built for the preliminary engineering development. The model tests in waves and wind were carried out to estimate motion characteristics of this platform in the Ocean Engineering Wide Tank of the University of Ulsan. Its motions were measured and the RAOs were compared. The proposed floating offshore wind turbine showed a good stability and decent responses in waves, wind and operation of the wind turbine.

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method

  • Girao Coelho, Ana M.;Simoes da Silva, Luis;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.33-53
    • /
    • 2006
  • The rotational behaviour of bolted extended end plate beam-to-column connections is evaluated in the context of the component method. The full moment-rotation response is characterized from the force-deformation curve of the individual joint components. The deformability of end plate connections is mostly governed by the bending of the column flange and/or end plate and tension elongation of the bolts. These components form the tension zone of the joint that can be modelled by means of "equivalent T-stubs". A systematic analytical procedure for characterization of the monotonic force-deformation behaviour of individual T-stub connections is proposed. In the framework of the component method, the T-stub is then inserted in the joint spring model to generate the moment-rotation response of the joint. The procedures are validated with the results from an experimental investigation of eight statically loaded extended end plate bolted moment connections carried out at the Delft University of Technology. Because ductility is such an important property in terms of joint performance, particularly in the partial strength joint scenario, special attention is given to this issue.