• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.026 seconds

Characterization of AprE176, a Fibrinolytic Enzyme from Bacillus subtilis HK176

  • Jeong, Seon-Ju;Heo, Kyeong;Park, Ji Yeong;Lee, Kang Wook;Park, Jae-Yong;Joo, Sang Hoon;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • Bacillus subtilis HK176 with high fibrinolytic activity was isolated from cheonggukjang, a Korean fermented soyfood. A gene, aprE176, encoding the major fibrinolytic enzyme was cloned from B. subtilis HK176 and overexpressed in E. coli BL21(DE3) using plasmid pET26b(+). The specific activity of purified AprE176 was 216.8 ± 5.4 plasmin unit/mg protein and the optimum pH and temperature were pH 8.0 and 40℃, respectively. Error-prone PCR was performed for aprE176, and the PCR products were introduced into E. coli BL21(DE3) after ligation with pET26b(+). Mutants showing enhanced fibrinolytic activities were screened first using skim-milk plates and then fibrin plates. Among the mutants, M179 showed the highest activity on a fibrin plate and it had one amino acid substitution (A176T). The specific activity of M179 was 2.2-fold higher than that of the wild-type enzyme, but the catalytic efficiency (kcat/Km) of M179 was not different from the wild-type enzyme owing to reduced substrate affinity. Interestingly, M179 showed increased thermostability. M179 retained 36% of activity after 5 h at 45℃, whereas AprE176 retained only 11%. Molecular modeling analysis suggested that the 176th residue of M179, threonine, was located near the cation-binding site compared with the wild type. This probably caused tight binding of M179 with Ca2+, whichincreased the thermostability of M179.

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Development of 3D DMFC Model for Flow Field Design (직접 메탄올 연료전지 유로 설계를 위한 3차원 모델 개발)

  • Kim, Hongseong;Danilov, Valeri A.;Lim, Jongkoo;Moon, Il
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The objective of this study is to develop a 3D DMFC model for modeling gas evolution and flow patterns to design optimal flow field for gas management. The gas management on the anode side is an important issue in DMFC design and it greatly influences the performance of the fuel cell. The flow field is tightly related to gas management and distribution. Since experiment for the optimal design of various flow fields is difficult and expensive due to high bipolar plate cost, computational fluid dynamics (CFD) is implemented to solve the problem. A two-fluid model was developed for CFD based flow field design. The CFD analysis is used to visualize and to analyze the flow pattern and to reduce the number of experiments. Case studies of typical flow field designs such as serpentine, zigzag, parallel and semi-serpentine type illustrate applications of the model. This study presents simulation results of velocity, pressure, methanol mole fraction and gas content distribution. The suggested model is verified to be useful for the optimal flow field design.

p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity (증분소성이론에 의한 p-Version 탄소성 유한요소해석)

  • 정우성;홍종현;우광성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.217-228
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of the p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity using the constitutive equation for work-hardening materials, and the associated flow rule. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the circular plate with uniformly distributed load. Those results are compared with the theoretical solutions and the numerical solutions of ADINA

  • PDF

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Development of Information & Communications Technologies Merged Municipal Government Bridge Maintenance System (ICT 융합 지자체 교량 유지관리 시스템개발)

  • Yun, Youngman
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.476-482
    • /
    • 2017
  • For the bridges managed by the municipalities, there is a need for a maintenance management system for the municipal governments for the scientific and systematic maintenance standard and the scientificization of the budget acquisition and execution through the quantified data base. The purpose of this study is to develop a system for efficient management of small bridgies maintained by the municipality and use ICT convergence technology such as BIM / GIS technology. The details of the system development include the development of the small bridgies maintenance program for mobile devices, the development of the small bridgies maintenance database, the development of the small bridgies integration maintenance management, and the reliability of the program system developed by checking the construction and operation contents of the small bridgies test-bed. The developed program system is linked to the development of smart name plate and reader module of non - power system.

Modeling of Particle Removal in the Coarse Media of Direct Horizontal-Flow Roughing Filtration (Direct Horizontal-Flow Roughing Filtration의 조립 여상에서의 입자 제거 모델링)

  • Ahn, Hyo-Won;Park, No-Suk;Lee, Sun-Ju;Lee, Kyung-Hyuk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.338-347
    • /
    • 2005
  • Horizontal-Flow Roughing Filtration (HRF) is one of altemative pretreatment methods e.g. prior to Slow Sand Filtration (SSF). However, some of its limitations are that the effluent quality drops drastically at higher turbidity (>200 NTU) and at higher filtration rate (>1 m/h). To overcome these drawbacks, we suggested Direct Horizontal-Flow Roughing Filtration (DHRF), which is a modified system of Horizontal-Flow Roughing (HRF) by addition of low dose of coagulant prior to filtration. In this study to optimize the DHRF configuration, a conceptual and mathematical model for the coarse compartment has been developed in analogy with multi-plate settlers. Data from simple column settling test can be used in the model to predict the filter performance. Furthermore, the model developed herein has been validated by successive experiments carried out. The conventional column settling test has been found to be an handy and useful to predict the performance of DHRF for different raw water characteristics (e.g. coagulated or uncoagulated water, different presence of organic matter, etc.) and different inital process conditions (e.g. coagulant dose, mixing time and intensity, etc.). An optimum filter design for the coarse compartment (grain size 20mm) has been found to be of 3 m/h filtration rate with filter length of 4-4.5 m.

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.