• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.027 seconds

An Algorithm of Curved Hull Plates Classification for the Curved Hull Plates Forming Process (곡가공 프로세스를 고려한 곡판 분류 알고리즘)

  • Noh, Ja-Ckyou;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.675-687
    • /
    • 2009
  • In general, the forming process of the curved hull plates consists of sub tasks, such as roll bending, line heating, and triangle heating. In order to complement the automated curved hull forming system, it is necessary to develop an algorithm to classify the curved hull plates of a ship into standard shapes with respect to the techniques of forming task, such as the roll bending, the line heating, and the triangle heating. In this paper, the curved hull plates are classified by four standard shapes and the combination of them, or saddle, convex, flat, cylindrical shape, and the combination of them, that are related to the forming tasks necessary to form the shapes. In preprocessing, the Gaussian curvature and the mean curvature at the mid-point of a mesh of modeling surface by Coon's patch are calculated. Then the nearest neighbor method to classify the input plate type is applied. Tests to verify the developed algorithm with sample plates of a real ship data have been performed.

Automation of block assignment planning using a diagram-based scenario modeling method

  • Hwang, In Hyuck;Kim, Youngmin;Lee, Dong Kun;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.162-174
    • /
    • 2014
  • Most shipbuilding scheduling research so far has focused on the load level on the dock plan. This is because the dock is the least extendable resource in shipyards, and its overloading is difficult to resolve. However, once dock scheduling is completed, making a plan that makes the best use of the rest of the resources in the shipyard to minimize any additional cost is also important. Block assignment planning is one of the midterm planning tasks; it assigns a block to the facility (factory/shop or surface plate) that will actually manufacture the block according to the block characteristics and current situation of the facility. It is one of the most heavily loaded midterm planning tasks and is carried out manually by experienced workers. In this study, a method of representing the block assignment rules using a diagram was suggested through analysis of the existing manual process. A block allocation program was developed which automated the block assignment process according to the rules represented by the diagram. The planning scenario was validated through a case study that compared the manual assignment and two automated block assignment results.

The Test of Mechanism Operation for 3D Printer Using Polygon Mirror (폴리곤 미러를 이용한 3D 프린터 기구부 동작 테스트)

  • Kwon, Dong-hyun;Heo, Sung-uk;Lim, Ji-yong;Oh, Am-suk;Kim, Wan-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.735-737
    • /
    • 2016
  • In this paper, we conducted a test of the 3D printer injection method and LSU (Laser Scanning Unit) feature a fusion of the polygon mirror scanning system that is the core mechanism operation for 3D printers for office laser printers SLA system. These tests ensure that the laser was operating and control well was confirmed that a certain point is output to the X-axis by means of a laser module and a polygon mirror. And confirmed after the F-theta lens is incident on the fixed laser power of the beam, and correction according to the correction beam on the mirror reflection was confirmed jineunji the focus according to the Z-axis upper plate.

  • PDF

Fabrication and Experiment of Pneumatic Steel Plate Chamfering Machine and Sensor System for Active Control of Chamfering (면취 공정의 능동 제어를 위한 공압식 자동 강재 면취기와 센서 시스템의 제작 및 실험)

  • Na, Yeong-min;Lee, Hyun-seok;Kim, Min-hyo;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.80-86
    • /
    • 2020
  • With the exception of welding activities, it is forbidden to use electricity in shipyards, owing to safety concerns such as the possibility of fire, explosions, and short circuits. In this paper, an automatic chamfering machine using pneumatics is proposed for use in such environments. Customers specify their requirements and the machine derives the corresponding theoretical design conditions. The proposed machine was used to perform 3D modeling, and its suitability and performance were confirmed via cutting experiments of the manufactured device. Two types of sensors may be used in this system: contact and non-contact. In the case of the contact type, an end-stop switch that can recognize the end of the material is installed, and when the machine reaches the end of the material, the end-stop switch is operated to cut off the air pressure. In the non-contact type, four sensors were used: photonic, ultrasonic, metal detection, and encoder. The use of the four sensors was repeated 30 times, and the average error determined. Thus, the optimum sensor was identified.

Simulation Analysis on Static Safety of 55Hp-Servo-Based Hydrostatic Transmission (시뮬레이션 기반의 55마력급 서보식 정유압 무단변속기 정적구조안정성 분석)

  • Won, Jonggeun;Yoon, Jongil;Lee, Hyunah;Chung, Seonggyo;Jeong, Jaesu
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.34-42
    • /
    • 2022
  • Hydrostatic transmission (HST) comprises rotary parts, shafts, valve plate, swashplate, and servo pistons. Ensuring structural stability of each part of an HST has a significant impact on product safety. In this study, the structural stability of HST in agricultural machinery and industrial vehicles was analyzed using ANSYS software. For conservative evaluation, high-pressure conditions (35.5 MPa and 2 MPa pilot pressure) were applied as load conditions. The number of grids used in the calculations ranged from 0.4 to 0.8 million depending on modeling requirements. Structural analysis was performed for essential parts and safety factor was analyzed. All major parts of HST had a safety factor of ≥ 1.5. Thus, they were judged to be structurally safe. This study provides important information for designing an HST system.

Acoustic Characteristics of the Haegeum Body (해금 몸체의 음향학적 특성에 관한 연구)

  • Noh, Jung-Uk;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.317-322
    • /
    • 2007
  • This paper is the first step to study on the acoustic characteristics of the Haegeum, a Korean traditional bowed-string instrument. We measured acoustic transfer functions of a Haegeum body using impulse response method. All the measurements are performed in anechoic chamber, INMC, SNU. We examined resonant characteristics of the Haegeum body with obtained transfer functions. Then we performed additional studies which are the Chladni pattern experiments and calculations of air cavity resonances to verify relations between the resonant peaks on the transfer functions and the resonances of each component, such as top plate, air cavity and so on. As a result, we can explain the acoustic characteristics of a Haegeum body and its components.

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.

Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs (블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법)

  • O-Hyun Kwon;Joo-Shin Park;Jung-Kwan Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.363-371
    • /
    • 2023
  • To construct a ship, blocks of various sizes must be moved and erected . In this process, lugs are used such that they match the block fastening method and various functions suitable for the characteristics of each shipyard facility. The sizes and shapes of the lugs vary depending on the weight and shape of the block structures. The structure is reinforced by welding the doubling pads to compensate for insufficient rigidity around the holes where the shackle is fastened. As for the method of designing lugs according to lifting loading conditions, a simple calculation based on the beam theory and structural analysis using numerical modeling are performed. In the case of the analytical method, a standardized evaluation method must be established because results may differ depending on the type of element and modeling method. The application of this ambiguous methodology may cause serious safety problems during the process of moving and turning-over blocks. In this study , the effects of various parameters are compared and analyzed through numerical structural analysis to determine the modeling conditions and evaluation method that can evaluate the actual structural response of the lug. The modeling technique that represents the plate part and weld bead around the lug hole provides the most realistic behavior results. The modeling results with the same conditions as those of the actual lug where only the weld bead is connected to the main body of the lug, showed a lower ulimated strength compared with the results obtained by applying the MPC load. The two-dimensional shell element is applied to reduce the modeling and analysis time, and a safety working load was verified to be predicted by reducing the thickness of the doubling pad by 85%. The results of the effects of various parameters reviewed in the study are expected to be used as good reference data for the lug design and safe working load prediction.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

NDP-sugar production and glycosylation of ${\varepsilon}$-rhodomycinone in Streptomyces venezuelae (Streptomyces Peucetius에서의 ${\varepsilon}$-rhodomycinone 추출 및 이종균주에서의 rhodomycin D 생산 연구)

  • Park, Sung-Hee;Cha, Min-Ho;Kim, Eun-Jung;Yoon, Yeo-Joon;Sohng, Jae-Kyung;Lee, Hee-Chan;Liou, Kwang-Kyoung;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.44-47
    • /
    • 2008
  • Anthracycline antibiotics doxorubicin (DXR) is clinically important cancer therapeutic agent produced by Streptomyces peucetius. DXR result by further metabolism of rhodomycin D (RHOD) and require a deoxy-sugar component for their biological activity. In this study, production of TDP-L-daunosamine and its attachment to ${\varepsilon}$-rhodomycinone (RHO) to generate RHOD has been achieved by bioconversion in Streptomyces venezuelae that bears eleven genes. S. peucetius seven genes (dnmUTJVZQS) were transformed by plasmid and S. venezuelae two genes desIII, IV and two more S. peucetius drrA, B genes were integrated into chromosomal DNA. To generate the feeding substrate RHO, 6L S. peucetius grown on agar plate was harvested, extracted with organic solvent and then purified using preparative HPLC. Recombinant S. venezuelae grown on agar plate containing RHO was harvested and its n-butanol soluble components were extracted. The glycosylated product of aromatic polyketide RHO using heterologous host S. venezuelae presents the minimal information for TDP-L-daunosamine biosynthesis and its attachment onto aglycone. Moreover, the structure of auxiliary protein, DnrQ, was predicted by fold recognition and homology modeling in this study. This is a general approach to further expand of new glycosides of antitumor anthracycline antibiotics.