• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.029 seconds

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

Floated Wafer Motion Modeling of Clean Tube system

  • Shin, Dong-Hun;Yun, Chung-Yong;Jeong, Kyoo-Sik;Choi, Chul-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1264-1268
    • /
    • 2004
  • This paper presents a wafer motion modeling of the transfer unit and the control unit in the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean airs. The motion in the transfer unit is modeled as a mass-spring-damper system where the recovering force by air jets issued from the perforated plate is modeled as a linear spring. The motion in the control unit is also modeled as another mass-spring-damper system, but in two dimensional systems. Experiments with a clean tube system built for 12-inch wafers show the validity of the presented force and motion models.

  • PDF

Heat Source Modeling and Study on the Effect of Thickness on Residual Stress Distribution in Electron Beam Welding

  • Rajabi, Leila;Ghoreishi, Majid
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In this study, the volumetric heat source in electron beam welding (EBW) is modeled through finite element method taking advantage of ABAQUS software package. Since this welding method is being applied in plates with different thicknesses and also considering that residual stresses reduce the strength of these weldments, the effect of thickness in the distribution and magnitude of residual stresses after welding is studied. Regarding the vast application of Inconel 706 super-alloy in aerospace industries, this material was selected in the current research. In order to validate the finite element model, the obtained results were compared to those of other researchers in this area, and good agreement was observed. The simulation results revealed that increase in the plate thickness leads to increase in the residual stresses. In addition heat treatment in the base metal (before welding) increases the residual stresses significantly.

Stiffener Modeling for Rectangular Plates Employing the Dirac's Delta Function and Modal Analysis (충격함수를 이용한 사각평판 보강재의 모델링 및 진동 해석)

  • Hur, Sung-Chul;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.833-839
    • /
    • 2003
  • The effects of stiffeners on the modal characteristics of rectangular plates are investigated. A modeling method for the modal analysis of rectangular plates with stiffeners is presented. A mass density Dirac's delta function is used to idealize the stiffeners mathematically. The equations of motion for the plates are derived and transformed into a dimensionless form. To confirm the accuracy of the method presented in this study, numerical result are obtained and compared to those of a commercial program. The mode shape variations due to some parameter variations are also exhibited.

Performance Analysis of the Rubber Belt type CVT System (고무 벨트식 무단변속기 시스템의 성능분석)

  • Kim, Sung-Mo;Zheng, Chun-Hua;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.376-381
    • /
    • 2011
  • CVT(Continuously Variable Transmission) is one of the most promising candidates for the future automobile transmission because of its continuously variable gear ratio and reduced shift shock. It is also possible to operate the power source at its high efficiency region with CVT. The CVT system consists of thrust plate, driving pulley, belt, driven pulley, and preload spring of output shaft. In this paper, the dynamic modeling of a CVT system is completed to obtain the static performances of CVT system. A simulator is implemented on Matlab(Simulink), which can analyse the static performances of a CVT system. The methods for improving the total efficiency of a motorcycle system are also proposed based on the simulation results. In this study we increase the capacity factor of CVT up to the three times of default specification.

Air blast load generation for simulating structural response

  • Guzas, Emily L.;Earls, Christopher J.
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.429-455
    • /
    • 2010
  • The current research presents a detailed methodology for generating air blast loading for use within a finite element context. Parameters describing blast overpressure loading on a structure are drawn from open literature sources and incorporated within a blast load generation computer code developed for this research. This open literature approach lends transparency to the details of the blast load modeling, as compared with many commonly used approaches to blast load generation, for which the details are not publicly available. As a demonstration, the load generation code is used with the finite element software LS-DYNA to simulate the response of a steel plate and girder subjected to explosions modeled using these parameters as well as blast parameters from other sources.

Modeling and Performance Evaluation of Muti-layered Composite Floor Plates with Holes (천공 다층 복합 바닥재의 모델링 및 성능 평가)

  • Yoo, Hong-Hee;Lee, Chang-Guen;Yoo, Hong-Geol;Ju, Young-Jun;Cho, Jung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.367.1-367
    • /
    • 2002
  • Recently, the noise environmental issue in compound residential areas like apartments becomes a very critical factor fer the building designers. In order to satisfy the customer need to live in a quiet environment, several interior structures for buildings are being introduced. The multi-layered composite floor plate is one of them. This structure is designed to prevent the noise generated by an object collision. (omitted)

  • PDF

Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion

  • Yoo, Hong-Hee;Kim, Sung-Kyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.448-453
    • /
    • 2002
  • This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. An accurate dynamic modeling method, which was introduced in the previous study, is employed to obtain the equations of motion for the vibration analysis. Dimensionless parameters are identified to generalize the conclusions from numerical results. The effects of the dimensionless parameters on the natural frequencies and mode shapes are investigated. Particularly, the magnitude of critical acceleration which causes the dynamic buckling of the structure is calculated. Incidentally, the natural frequency loci veering phenomena are observed and discussed.

Structural Analysis of Boiler Module for Sea-Transportation (해상 운송을 위한 보일러 모듈의 구조 해석)

  • Jeon, Y.C.;Kim, T.W.;Jeong, D.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.788-793
    • /
    • 2001
  • Finite element analysis was carried out to investigate the integrity and reliability of boiler module during sea transportation. The boiler module was supported by steel structure to relieve the instantaneous shock from oceanic wave and its primary parts were strengthened with several reinforcements. Finned tube walls which were used in the furnace wall were assumed as orthotropic plates having equivalent material properties. The bank tubes were also equivalently modeled in accordance with ASME B31.1 for the convenience of finite element modeling. The calculation results were compared with the yield stress of the material. In particular, the bank tube stress, which was evaluated by converting the calculated stresses in equivalent tubes into those in original tubes by using the ratio of diameter, was also examined with yield stress.

  • PDF

Dynamic Modeling and Active Vibration Control of Cylindrical Shell equipped with MFC Actuators (MFC 작동기가 부착된 박판 실린더 쉘의 동적 모델링과 능동진동제어)

  • Kwak, Moon-K.;Jung, Moon-San;Bae, Byung-Chan;Lee, Myuing-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1229-1234
    • /
    • 2006
  • This paper is concerned with the dynamic modeling and controller design for a cylindrical shell equipped with MFC actuators. The dynamic model was derived by using Ravleigh-Ritz method based on Donnel-Mushtari shell theory. The boundary conditions at both ends were assumed to be shear diaphragm. To verify the theoretical results, a cylindrical shell structure made of aluminum was built ana tested by using impact hammer. Experimental results show that there are little discrepancies compared to theoretical results because of the boundary conditions at both ends. The MFC actuators were glued to the cylindrical shell in longitudinal and circumferential directions. The PPF controller were designed for lowest two modes and applied to the MFC actuators. The experimental results show that vibrations can be successfully suppressed.

  • PDF