• Title/Summary/Keyword: Plate Mill

Search Result 82, Processing Time 0.027 seconds

Development of character recognition system for the mixed font style in the steel processing material

  • Lee, Jong-Hak;Park, Sang-Gug;Park, Soo-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1431-1434
    • /
    • 2005
  • In the steel production line, the molten metal of a furnace is transformed into billet and then moves to the heating furnace of the hot rolling mill. This paper describes about the development of recognition system for the characters, which was marked at the billet material by use template-marking plate and hand written method, in the steel plant. For the recognition of template-marked characters, we propose PSVM algorithm. And for the recognition of hand written character, we propose combination methods of CCD algorithm and PSVM algorithm. The PSVM algorithm need some more time than the conventional KLT or SVM algorithm. The CCD algorithm makes shorter classification time than the PSVM algorithm and good for the classification of closed curve characters from Arabic numerals. For the confirmation of algorithm, we have compared our algorithm with conventional methods such as KLT classifier and one-to-one SVM. The recognition rate of experimented billet characters shows that the proposing PSVM algorithm is 97 % for the template-marked characters and combinational algorithm of CCD & PSVM is 95.5 % for the hand written characters. The experimental results show that our proposing method has higher recognition rate than that of the conventional methods for the template-marked characters and hand written characters. By using our algorithm, we have installed real time character recognition system at the billet processing line of the steel-iron plant.

  • PDF

Design of Rolling Pass Schedule in Copper Thin Foil Cold Rolling According to Roll Crown of 6 High Mill (6단 압연롤 크라운을 고려한 동극박 냉간 압연 패스스케줄 설계)

  • Lee, Sang-Ho;Ok, Soon-Young;Hwang, In-Youb;Hwang, Won-Jea;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.66-72
    • /
    • 2008
  • During the plate and foil cold rolling process, considerable values of the force of material pressure on the tool occur. These pressures cause the elastic deformation of the roll, thus changing the shape of the deformation legion. Rolled copper foils should be characterized by a good quality and light dimensional tolerances. Because of automation that is commonly implemented in flat product rolling mills, these products should meet the requirements of tightened tolerances, particularly strip thickness, and feature the greatest possible flatness. The shape of the roll gap is influenced by the elastic deformation of rolls parts of the rolling process affecter of the pressure force. However, to control roll deformation should be difficult. Because the foil thickness is very thin and the permissible deviations in the thickness of foil are small. In this paper, FE-simulation of roll deformation in thin foil cold roiling process is presented.

Development of Multi-point Heat Flux Measurement for Steel Quenching (강재 열처리용 다점 열유속 측정 기술 개발)

  • Lee, Jungho;Oh, Dong-Wook;Do, Kyu Hyung;Kim, Tae Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.4
    • /
    • pp.181-189
    • /
    • 2012
  • The demand on quantitative measurement of the heat flux is motivated in making higher-quality steel product through a water quenching process of plate mill. To improve a spatial degree of heat flux measurement, the multi-point heat flux measurement was carried out by a unique experimental technique that has a combination of the existing single-point heat flux gauge. The corresponding heat flux can be easily determined by Fourier's law in a conventional way. The multi-point heat flux gauge developed in this study can be applicable to measure the surface heat flux, the surface heat transfer coefficient during a water quenching applications of steelmaking process. The results exhibit different heat transfer regimes; such as single-phase forced convection, nucleate boiling, and film boiling, that are occurred in close proximity on the multi-point heat flux gauge quenched by water impinging jet.

Performance Enhancement of 3-way Doherty Power Amplifier using Gate and Drain bias control (Gate 및 Drain 바이어스 제어를 이용한 3-way Doherty 전력증폭기와 성능개선)

  • Lee, Kwang-Ho;Lee, Suk-Hui;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this thesis, 50W Doherty amplifier was designed and implemented for Beyond 3G's repeater and base-station. Auxiliary amplifier of doherty amplifier was implemented by Gate bias control circuit. Though gate bias control circuit solved auxiliary's bias problem, output characteristics of doherty amplifier was limited. To enhance the output characteristic relativize Drain control circuit And To improve power efficiency make 3-way Doherty power amplifier. therefore, 3-way GDCD (Gate and Drain bias Control Doherty) power amplifier is embodied to drain bias circuit for General Doherty power amplifier. The 3-way GDCD power amplifier composed of matching circuit with chip capacitor and micro strip line using FR4 dielectric substance of specific inductive capacity(${\varepsilon}r$) 4.6, dielectric substance height(H) 30 Mills, and 2.68 Mills(2 oz) of copper plate thickness(T). Experiment result satisfied specification of amplifier with gains are 57.03 dB in 2.11 ~ 2.17 GHz, 3GPP frequency band, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and ACLR characteristics at 5MHz offset frequency band station is -40.45 dBc. Especially, 3-way DCHD power amplifier showed excellence efficiency performance improvement in same ACLR than general doherty power amplifier.

Herbicidal activity of Korean native plants (II) (살초활성물질 함유 국내 자생식물의 탐색 (II))

  • Kim, Mi-Sung;Lee, Yu-Sun;Khoa, Dao Bach;Kim, Hee-Yeon;Choi, Hae-Jin;Lim, Sang-Hyun;Heo, Su-Jeong;Kwon, Soon-Bae;Park, Dong-Sik;Han, Sang-Sub;Kim, Song-Mun
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.3
    • /
    • pp.220-230
    • /
    • 2004
  • This study was conducted of Korean native plants to screen herbicidal activity which could be used for the development of new natural herbicides. Ninety-eight plants were collected from Wan Island, Chollanamdo in Korea and their methanol extracts were obtained. Herbicidal activities of the methanol extracts were determined by seed bioassay using canola (Brassica napus L.) seedlings. Among ninety-eight species, twenty plants were highly herbicidal ($GR_{50}<1,000\;{\mu}g\;g^{-1}$): Abies holophylla MAXIM., Ailanthus altissima (MILL.) SWINGLE, Anthemis nobilis L., Aralia elata SEEM., Artemisia iwayomogi KITAMURA, Asarum sieboldii MIQ., Brassica campestris subsp. napus var. nippo-oleifera MAKINO, Clematis terniflora DC., Crataegus scabrida SARG., Gnaphalium affine D. DON, Jasminum nudiflorum LINDL., Kalopanax pictus (THUNE.) NAKAI, Machilus japonica S. et Z., Myrica rubra S. et Z., Osmunda japonica THUNB., Phytolacca esculenta V. Houtte, Platanus occidentalis L., Quisqualis indica L., Rubus hirsutus THUNB., Yucca smalliana FERN. Fifty plants were shown moderate herbicidal activity $(1,000\;{\mu}g\;g^{-1}, however, twenty-eight plants were not shown any herbicidal activity.

Fabrication of copper thin foils with 36 microns by cold rolling (냉간 압연 공정에 의한 두께 $36{\mu}m$ 동극박 제조 공정 해석)

  • Lee, S.H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.413-416
    • /
    • 2007
  • In general, by means of the electrodepositing technique, a copper foil sample was prepared with a high purity and a high density. But the mechanical properties of the electrodepositing copper foil was lower than it's the rolling copper foil. However, the production of copper foil with approximately 36 microns thick in rolling process was very difficult. This paper describes the outline of the high accuracy cold rolling in 6 high mill which was developed for the purpose of rolling very thin accurate gauge copper foil(36 micron thick), and give several rolling characteristic of 600 mm wide copper foil. a) Large strain can be accumulated pass by pass in industrial multi-pass rolling processing to overcome large critical strain for thickness accuracy through optimization of rolling schedule. b) Also, permissible tension for rolling 0.45 $\sim$ 0.036 mm thick copper strip stably in accordance with the each pass work had been established by FEM simulation results. c) During the plate rolling process, considerable values of the forces of material pressure on the tool occur. These pressures cause the elastic deformation of the roll, thus changing the shape of the deformation region. A numerical simulation of roll deflection during cold rolling is presented in the paper. d) The proposed pass schedule can roll very thin copper foil of 36 micron thickness to a tolerance of ${\pm}1$ microns. The validity of simulated results was verified into rolling experiments on the copper foil.

  • PDF

Development of Ceramic Pigment using Brass Scrap (각종 황동 Scrap를 사용한 Ceramic 안료 개발)

  • Kim, Jun-Ho;Jeon, Ok-Hyun;Suh, Man-Chul;Lee, Byung-Ha
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.6
    • /
    • pp.197-204
    • /
    • 2007
  • Ceramic pigments were developed by using 4 kinds of Brass scraps. Each Brass scraps were mixed with same weight-ratio of Husk ash, and fine-ground by Rotate ring mill(RRG-120, Armstech industrial. co. Ltd, Korea) after firing at $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. As a result, analysis of particle size of synthetic pigments by particle size analyser, they are $3{\mu}m$ as average. The resulting pigments were characterized by using XRD, FT-IR, SEM Structure of the crystals are Zn2SiO4,, and ZnO, Cu2O, CuO, and cristobalite are existed and particles' shape are plate or needle. As a result of analysis of chemical composition by XRF, synthetic pigments have high SiO2 and CuO content and have SnO2, ZnO and NiO, too. 1wt%, 3wt% and 5wt% pigments were added in each lime glaze, lime-barium glaze and lime-magnesia glaze, and fired at oxidation and reducing atmosphere to figure hue in glazes out. As a result of analysis of color, chroma and brightness by UV, colors of glazes fired at oxidation atmosphere turned into green from sky blue, and colors of glazes fired at reducing atmosphere turned into pink and red.

Particle Size Analysis of Nano-sized Talc Prepared by Mechanical Milling Using High-energy Ball Mill (고에너지 볼 밀을 이용한 나노 활석의 형성 및 입도 분석)

  • Kim, Jin Woo;Lee, Bum Han;Kim, Jin Cheul;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-55
    • /
    • 2018
  • Talc, hydrous magnesium phyllosilicate, is one of the most popular industrial minerals due to their chemical stability and adsorptivity. While micro-sized talc has long been used as a filler and coating, nano-sized talc recently is attracting attention as additives for improving the stability of nanocomposites. In this study, we produced the nano-sized talc powder by mechanical method using high energy ball mill and investigated the changes in particle size and crystallinity with increasing milling time up to 720 minutes. X-ray diffraction results show that the peak width of talc gradually as the milling proceeded, and after 720 minutes of pulverization, the talc showed an amorphous-like X-ray diffraction pattern. Lase diffraction particle size analysis presents that particle size of talc which was ${\sim}12{\mu}m$ decreased to ${\sim}0.45{\mu}m$ as the milling progressed, but no significant reduction of particle size was observed even after grinding for 120 minutes or more. BET specific surface area, however, steadily increases up to the milling time of 720 minutes, indicating that the particle size and morphology change steadily as the milling progressed. Scanning electron microscope and transmission electron microscope images shows that layered particles of about 100 to 300 nm was aggregated as micro-sized particles after pulverization for 720 minutes. As the grinding time increases, the particle size and morphology of talc continuously change, but the nano-sized talc particles form micro sized agglomerates. These results suggest that there is a critical size along the a, b axes in which the size of plates is reduced even though the grinding proceeds, and the reduction of plate thickness along the c axis leads the increase in specific surface area with further grinding. This study could enhance the understanding of the mechanism of the formation of nano-sized talc by mechanical grinding.

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

Microwave Absorbing Properties of Iron Particles-Rubber Composites in Mobile Telecommunication Frequency Band (이동통신주파수 대역에서 순철 분말-고무 복합체 Sheet의 전파흡수특성)

  • Kim, Sun-Tae;Kim, Sant-Keun;Kim, Sung-Soo;Yoon, Yeo-Choon;Lee, Kyung-Sub;Choi, Kwang-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2004
  • For the aim of thin electromagnetic wave absorbers used in mobile telecommunication frequency band (0.8-2.0㎓), we investigate high-frequency magnetic, dielectric and microwave absorbing properties of iron particles dispersed in rubber matrix in this study. The major experimental variables are particle shape (sphere and flake) and initial particle size (in the range 5-70 $\mu\textrm{m}$) of iron powders. High value of magnetic permeability and dielectric permittivity can be obtained in the composites containing thin plate-shape (flake) iron particles (of which thickness is less than skin depth in ㎓frequency), which can be produced by mechanical forging of spherical iron powders using an attrition mill. This result is attributed to the reduction of eddy current loss (increase of permeability) and the increase of space charge polarization (increase of permeability). The optimum initial particle size is found to be about 10 $\mu\textrm{m}$ for the attainment of the material parameters (particularly, real part of complex permeability) satisfying the wave impedance matching. With the iron powders controlled in size and shape as absorbent fillers in rubber matrix, the thickness can be reduced to about 0.7mm with respect to -5㏈ reflection loss (70% power absorption) in mobile telecommunication frequency band.