• Title/Summary/Keyword: Plastic strain energy

Search Result 216, Processing Time 0.03 seconds

New optimum distribution of lateral strength of shear-type buildings for uniform damage

  • Donaire-Avila, Jesus;Lucchini, Andrea;Benavent-Climent, Amadeo;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.279-291
    • /
    • 2020
  • The seismic design of conventional frame structures is meant to enhance plastic deformations at beam ends and prevent yielding in columns. To this end, columns are made stronger than beams. Yet yielding in columns cannot be avoided with the column-to-beam strength ratios (about 1.3) prescribed by seismic codes. Preventing plastic deformations in columns calls for ratios close to 4, which is not feasible for economic reasons. Furthermore, material properties and the rearrangement of geometric shapes inevitably make the distribution of damage among stories uneven. Damage in the i-th story can be characterized as the accumulated plastic strain energy (Wpi) normalized by the product of the story shear force (Qyi) and drift (δyi) at yielding. Past studies showed that the distribution of the plastic strain energy dissipation demand, Wpi/ΣWpj, can be evaluated from the deviation of Qyi with respect to an "optimum value" that would make the ratio Wpi/(Qyiδyi) -i.e. the damage- equal in all stories. This paper investigates how the soil type and ductility demand affect the optimum lateral strength distribution. New optimum lateral strength distributions are put forth and compared with others proposed in the literature.

C]RASH ANALYSIS OF AUTO-BODY STRUCTURES CONSIDERING THE STRAIN-RATE HARDENING EFFECT

  • Kang, W.J.;Huh, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • The crashworthiness of vehicles with finite element methods depends on the geometry modeling and the material properties. The vehicle body structures are generally composed of various members such as frames, stamped panels and deep-drawn parts from sheet metals. In order to ensure the impact characteristics of auto-body structures, the dynamic behavior of sheet metals must be examined to provide the appropriate constitutive relation. In this paper, high strain-rate tensile tests have been carried out with a tension type split Hopkinson bar apparatus specially designed for sheet metals. Experimental results from both static and dynamic tests with the tension split Hopkinson bar apparatus are interpolated to construct the Johnson-Cook and a modified Johnson-Cook equation as the constitutive relation, that should be applied to simulation of the dynamic behavior of auto-body structures. Simulation of auto-body structures has been carried out with an elasto-plastic finite element method with explicit time integration. The stress integration scheme with the plastic predictor-elastic corrector method is adopted in order to accurately keep track of the stress-strain relation for the rate-dependent model accurately. The crashworthiness of the structure with quasi-static constitutive relation is compared to the one with the rate-dependent constitutive model. Numerical simulation has been carried out for frontal frames and a hood of an automobile. Deformed shapes and the Impact energy absorption of the structure are investigated with the variation of the strain rate.

  • PDF

Sensitivity Analysis of Fabrication Parameters for Dry Process Fuel Performance Using Monte Carlo Simulations

  • Park Chang Je;Song Kee Chan;Yang Myung Seung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.338-345
    • /
    • 2004
  • This study examines the sensitivity of several fabrication parameters for dry process fuel, using a random sampling technique. The in-pile performance of dry process fuel with irradiation was calculated by a modified ELESTRES code, which is the CANDU fuel performance code system. The performance of the fuel rod was then analyzed using a Monte Carlo simulation to obtain the uncertainty of the major outputs, such as the fuel centerline temperature, the fission gas pressure, and the plastic strain. It was proved by statistical analysis that for both the dry process fuel and the $UO_2$ fuel, pellet density is one of the most sensitive parameters, but as for the fission gas pressure, the density of the $UO_2$ fuel exhibits insensitive behavior compared to that of the dry process fuel. The grain size of the dry process fuel is insensitive to the fission gas pressure, while the grain size of the $UO_2$ fuel is correlative to the fission gas pressure. From the calculation with a typical CANDU reactor power envelop, the centerline temperature, fission gas pressure, and plastic strain of the dry process fuel are higher than those of the $UO_2$ fuel.

Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • This paper prescribed the structural integrity of the API 5L X65 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5L X65 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5L X65 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.

The General Characteristic of Elastic-Plastic Spectra (탄소성 응답스펙트럼의 일반적인 성질에 대하여)

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.233-240
    • /
    • 1997
  • Seven kinds of hysteric model were used and classified three groups considering the absorbing capacities of strain energy for each model. Four kids of each model. Four kinds of strong motion earthquake record (two of them were recorded in Japan and the others in U.S.A) are used. The yield strength of building was set in the ratio to the maximum input acceleration (Yield Strength / Maximum Acceleration = 0.5~3.0). Natural periods of structures were varied 0.1~3.0 second with an interval of 0.1 second. First group : Elastic-Plastic model, Ramberg-Osgood model Second group : Degrading Tri-liner model, Takeda model Third group : Slip model, Origin model, Max-D model Elastic-plastic response spectra were calculated for response velocities, displacement, energy input, ductility factors, accumulated ductility factors. The equivalent response values of M.D.O.F systems against S.D.O.F system were calculated to compare the relationship of two systems.

  • PDF

Study on Crashworthiness of Icebreaker Steel: Part I Steel Properties (쇄빙선 강재의 내충격 특성에 관한 실험적 연구: 제1부 강재 특성)

  • Noh, Myung-Hyun;Lee, Jae-Yik;Park, Sung-Ju;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.268-276
    • /
    • 2016
  • This paper presents a study on the crashworthiness of the scaled-down stiffened panels used on a Korean icebreaker. In order to validate the crashworthiness of the panels, this paper provides various mechanical properties such as the results of a CVN test, quasi-static tensile test, and high-speed tensile test at arctic temperatures. Two types of steels (EH32 and FH32) were chosen for the material tests. CVN tests revealed that the two steels were equivalent up to −60℃ in terms of their impact energy absorption capacity. However, the toughness of FH32 was significantly superior to that of EH32. EH32 showed slightly higher flow stresses at all temperature levels compared to FH32. The improvement ratios of the yield strengths, tensile strengths, plastic hardening exponents, etc. for FH32, which were obtained from quasi-static tensile tests, showed an apparent ascending tendency with a decrease in temperature. Dynamic tensile test results were obtained for the two temperatures levels of 20℃ and −60℃ with two plastic strain rate levels of 1 s−1 and 100 s−1. A closed form empirical formula proposed by Choung et al. (2011;2013) was shown to be effective at predicting the flow stress increase due to a strain rate increase.

Energy Absorption Capability of Amorphous Alloys During Homogeneous Deformation (균일변형시 비정질 합금의 에너지 흡수력 평가)

  • Park, Kyoung-Won;Lee, Chang-Myeon;Lee, Hong-Gi;Lee, Jae-Hoon;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.572-576
    • /
    • 2008
  • Elastostatic compression tests were carried out on amorphous alloys to evaluate their energy absorption capability during homogeneous deformation at room temperature. Experiments demonstrated that a compressive stress below the global yield imposed on amorphous alloys for extended periods causes homogeneous plastic strain associated with the irreversible structural disordering. During the disordering process, free volume was created, dissipating the externally applied strain energy and the rate of creation was found to converge to a saturated value. We evaluated the capability of energy absorption of amorphous alloys during homogeneous deformation using recent theories on the evolution of the structural state.

Failure characteristics and mechanical mechanism of study on red sandstone with combined defects

  • Chen, Bing;Xia, Zhiguo;Xu, Yadong;Liu, Shuai;Liu, Xingzong
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.179-191
    • /
    • 2021
  • In this study, the strength and failure mechanism of red sandstones with combined defects were investigated by uniaxial compression tests on red sandstones with different crack angles using two-dimensional particle flow code numerical software, and their mechanical parameters and failure process were studied and analyzed. The results showed that the mechanical characteristics such as peak strength, peak strain, and elastic modulus of the samples with prefabricated combined defects were significantly inferior than those of the intact samples. With increasing crack angle from 15° to 60°, the weakening area of cracks increased, elastic modulus, peak strength, and peak strain gradually reduced, the total number of cracks increased, and more strain energy was released. In addition, the samples underwent initial brittle failure to plastic failure stage, and the failure form was more significant, leading to peeling phenomenon. However, with increasing crack angle from 75° to 90°, the crack-hole combination shared the stress concentration at the tip of the crack-crack combination, resulted in a gradual increase in elastic modulus, peak strain and peak strength, but a decrease in the number of total cracks, the release of strain energy reduced, the plastic failure state weakened, and the spalling phenomenon slowed down. On this basis, the samples with 30° and 45° crack-crack combination were selected for further experimental investigation. Through comparative analysis between the experimental and simulation results, the failure strength and final failure mode with cracks propagation of samples were found to be relatively similar.

Energy Dissipation of Steel Connection Details (철골접합부 상세별 에너지 소산)

  • 김장훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.155-162
    • /
    • 2003
  • The evolved energy concept has been demonstrated to fir the seismic evaluation of various steel connection details with the objective basis. For this, the strain energy stored in the structural system obtained from the experimental database has been normalized by that of a benchmark system. In this notion, the ideal elastic-perfectly plastic structural system has been assumed as a benchmark. In addition, the attempt shows that those previously peformed experimental database can be recycled to have further significance.

  • PDF

New Approach for Nonlinear Analysis of Reinforced Concrete Frames (철근콘크리트 골조 비선형해석의 새로운 기법)

  • 김진근;이태규;양주경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.47-52
    • /
    • 1992
  • The entire nonlinear behavior of reinforced concrete frames up to collapse, is analyzed by the displacement control method and the combined layered and nonlayered method. All of the rigidities of section are calculated approximately by a sum over all the layers for the layered method, are used the integral values over the cross section area for the nonlayered method. The spurious sensitivity to the chosen element size in the result of analysis by finite element method for the materials with strain-softening can be overcome by modifying the strain distribution based on the concept of fracture energy at plastic hinge considering the applied axial load.

  • PDF