• Title/Summary/Keyword: Plastic reinforcement

Search Result 419, Processing Time 0.024 seconds

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Collapse Prevention Method of Long-span Plastic Greenhouse for Heavy Snow (장스팬 비닐하우스의 폭설에 의한 붕괴방지법 연구)

  • Kim, Bo-Kyung;Lee, Swoo-Heon;Kim, Jin-Wook;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2010
  • The cases of collapse of greenhouses in rural areas have been increasing due to the unexpected heavy snow load. Studies on how to prevent the collapse of greenhouses are rare, however, and the damages are repeated annually. This studysuggests two reinforcing methods: the use of ahigh-strength tapered module, and the addition of a pre-tension tie. The high-strength tapered section is installed where the bending moment is maximum. The design of a plastic greenhouse is controlled by its strength rather than its deflection. The shape of a greenhouse resembles that of an arch system, but its actual structural behavior is the frame behavior, because it is non-continually composed of a curved element (a beam) and vertical elements (columns). This system is too weak and slender to resist a vertical load, because an external load is resisted by the moment rather than by axial force. In this study, a new method, the installation of a temporary tie at the junction of the arch and the column only during snow accumulation, is proposed. The tie changes the action of the greenhouse frame to an arch action. The arch action is more effective when the pre-tension force is applied in the tie, which results in a very strong temporary structural system during snowfall. As a result of using this high-strength tapered section, the combined strength ratio of what? decreased from 10% to 30%. In the case of the additional reinforcement with a tie, it was reduced by half.

Seismic Performance Assessment of RC Circular Column-Bent Piers Subjected to Bidirectional Quasi-Static Test (이축방향 유사정적 실험에 의한 이주형 철근콘크리트 원형 교각의 내진 성능평가)

  • Chung Young Soo;Park Chang Kyu;Lee Beom Gi;Song Hee Won
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.121-128
    • /
    • 2005
  • A RC column-bent pier represents one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent-piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. One single column specimen was additionally made to comparatively evaluate the seismic response of RC column-bent piers. Test parameters are different transverse reinforcement and loading pattern. These piers were tested under lateral load reversals with the axial load of $0.1 f_{ck}A_g$. Three specimens were subjected to bidirectional lateral load cycles which consisted of two main longitudinal loads and two sub transverse loads in one load cycle. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter three specimens were generally bigger than those of the former three specimens. Plastic hinges were formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom plastic hinge of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

Analysis of the Stability and Behavior of a Calcareous Rock Slope During Construction of a Tunnel Entrance (터널출입구 시공에 따른 석회암 사면의 안정성 및 거동 분석)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.283-292
    • /
    • 2013
  • A calcareous rock slope failed during excavation of the slope for construction of a tunnel entrance. The slope is located at the construction site for widening highway in Yeongwol, Korea. Field surveys, laboratory tests, and numerical analyses were performed to determine the reason for the slope failure. The numerical analysis revealed that the safety factor of the slope before construction of the entrance was less than 1, and that this decreased after construction. After construction of the entrance, the sliding zone of the slope increased and slope stability decreased because the shear strain and plastic zone in the slope over the tunnel entrance showed an increase relative to the lower part of the slope. To enhance the stability of the slope for construction of the tunnel entrance, countermeasures such as rock bolts, rock anchors, and FRP (Fiber glass Reinforced Plastic) grouting were adopted in light of the field conditions. Serial field monitoring performed to confirm the reinforcing effects of the adopted countermeasures revealed a small amount of horizontal deformation of the slope soils, most of the elastic deformation that can regain its former value. In addition, the axial forces of the rock bolt and anchor were more strongly affected by slope excavation during construction of the tunnel entrance than by tunnel excavation or the rainy season, and the axial forces tended to converge after excavation of the tunnel. Therefore, we can confirm that the slope is currently safe.

Structural Performance of Joints for Partial Reinforced Beam Using GFRP Laminated Plate and Cylindrical Reinforced LVL Column (GFRP적층판을 활용한 보강보부재와 원통형 단판적층기둥재 접합부의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Jung-Jae;Suh, Jin-Suk;Park, Sang-Bum;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.282-289
    • /
    • 2014
  • After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at $150^{\circ}C$ with pressure of $1.96N/mm^2$. A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

Seismic Performance Evaluation of Full-size Non-seismic Circular RC Bridge Piers with Longitudinal Steel Lap splice (주철근 겹침이음된 실물 비내진 원형 교각의 내진성능평가)

  • Chung Young-Soo;Lee Dae-Hyung;Ko Seong-Hyun;Lee Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.697-707
    • /
    • 2004
  • Most bridge piers were practically designed and constructed with lap spliced longitudinal reinforcing steels before the 1992 seismic design provisions of Korea Bridge Design Specification were implemented. It has been known that lap splice of longitudinal reinforcement in the plastic hinge region is not desirable for seismic performance of RC bridge piers. The objective of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test and to propose the need of seismic retrofit of existing bridge piers through the damage level. Test specimens were nonseismically designed with the aspect ratio 4.0 which could induce the flexural failure mode. It was confirmed from this experiment that significant reduction of seismic performance was observed for test specimens with lap spliced longitudinal reinforcing steels. Pertinent seismic retrofit was determined to be needed for existing RC bridge piers with the lap-spliced of $50\%$ longitudinal reinforcing steels.

An Experimental Evaluation of Structural Performance for the Beam to Column Joints in Unit Modular System (유닛 모듈러 기둥-보 조인트의 구조 성능에 대한 실험적 평가)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.255-265
    • /
    • 2013
  • The major goal of this study is to develop the industrialized structural system that can build high-rise buildings using the box-shaped steel frames such as a unit module system. In order to achieve such a goal, we need the advanced details for joints that consist in a single unit. Furthermore we also need to commercialize the unit modular building system through the basic experiments, research of theoretical analysis and the achievement of seismic performance. This study derived to develop the derails in the beam-to-column joint and to carry out structural performance test. Test results, a joint with thickness of 6.0T can be possible to maintain the plastic rotational angle for strength and seismic performance. Therefore, joint with thickness of 6.0T is able to apply when considering reinforcement in the local of stress concentration.