• Title/Summary/Keyword: Plastic joining

Search Result 242, Processing Time 0.035 seconds

Study of Failure Criterion of Hole-Notched Plain-Weave Carbon Fiber Reinforced Plastic (CFRP) Composites (홀 노치를 포함한 평직 탄소섬유강화플라스틱의 파괴기준 연구)

  • Kim, Sang-Young;Geum, Jin-Hwa;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.481-486
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic (CFRP) have been used in various fields because of its high specific modulus, and chemical properties. Most products in which CFRP composites are used are manufactured by joining the product components by bolts or pins. Holes for bolts and pins decrease the strength of the components because these holes act as notches in the structures. In this study, the fracture strength of CFRP plain-weave composite plates containing holes is experimentally investigated to examine the effects of hole-size and specimen width on notched tensile strength. The results show that the characteristic length considered in the point stress criterion depends on the hole size and specimen width. There exists a certain relation between notched tensile strength and characteristic length. Fracture criterion is redefined on basis of this relation.

Residual stress analysis of thick plate pipe (후판 파이프 제작시 잔류응력)

  • Choe Gwang;Im Seong U
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.150-152
    • /
    • 2004
  • This study was aimed at evaluation of residual stress of steel pipe structures. The production process of pipes was complex (at first bending was done by roll forming or press forming and welding was final process of making of steel pipes). So there could be effected high residual stresses in steel pipes. In order to evaluate the changes of residual stress the locations of measurement were selected carefully. Measurements of residual stress were done for various kinds of pipes (shapes in circular and square). For the evaluation of residual stress, hole-drilling method (ASTM E837 was applied. The results showed that along the weld Eine high tensile stress were measured as effected, and high tensile stresses were measured where large plastic deformation developed. Through these efforts, experimental results could be more effectively assisted by numerical method.

  • PDF

Selection of the Optimum Seaming Condition for Spin Drum Using Design of Experiment (실험계획법을 이용한 스핀드럼의 시밍 최적조건 선정)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1511-1516
    • /
    • 2007
  • Because Seaming process of MPJ (Mechanical Press Joining) has various design factors such as thickness, bending radius, seaming width, caulking press width and the dynamic factor such as multistage plastic working, elastic recovery, residual stress, the optimum conditions can't be easily determined. Using a design of experiment based on the FEM, which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor during drum MPJ and proposed optimum condition using center composition method among response surface derived from regression equation of simulation-based DOE.

  • PDF

A Research on Hydrostatic Extrusion of Copper-Clad Aluminum Bar (구리-알루미늄 클래드 봉의 정수압 압출 특성 연구)

  • 김창훈;김시영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.27-33
    • /
    • 1999
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminum rod through metallurgical joining. In this study, the rigid plastic finite element program, HICKORY, is used to analyze the steady state extrusion process of the bimetal rod. Simulations are performed for copper-clad aluminum rod with several extrusion ratio to give the distributions of effective strain rate, equivalent stress and hardness. Experiments are also carried out for aluminum-inserted copper rod at room temperature. It is found out that finite element predictions are generally in good agreement with the experimental observations. The detail comparison of the extrusion loads by the finite element method with those by experiments are given.

  • PDF

THE EFFECTS OF HEAT INPUT AND GAS FLOW RATE ON WELD INTEGRITY FOR SLEEVE REPAIR WELDING OF IN-SERVICE GAS PIPELINES

  • Kim, Young-pyo;Kim, Woo-sik;Bani, In-wan;Oh, Kyu-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.390-395
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMA W and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The [mite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

THE EVALUATION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDEDAL-MG-SI ALLOY

  • Lee, Won-Bae;Yeon, Yun-Mo;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.499-504
    • /
    • 2002
  • The microstructural change associated with the hardness profile in friction stir welded, age-hardenable 6005 Al alloy had been evaluated. Frictional heat and plastic flow during friction stir welding created the fine recrystallized grain (Stir Zone, SZ), the elongated and recovered grain (Thermo-Mechanical Affected Zone, TMAZ) in the weld zone. Heat affected zone (HAZ), which could be only identified by hardness test because there is no difference in the grain structure compared with that of the base metal, was formed beside the weld zone. A softened region had been formed near the weld zone during friction stir welding process. The softened region was characterized by the dissolution and coarsening of the strengthening precipitate during the friction stir welding. The sound joints of 6005 Al alloys were successfully formed under a wide range of the friction stir welding conditions.

  • PDF

Residual Stress Measurement on Welded Specimen by Neutron Diffraction (중성자 회절을 이용한 용접부위의 잔류응력 측정)

  • ;;;;;;Vyacheslav T. Em
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.90-93
    • /
    • 2000
  • Residual stress is generated in the structures as a result of irregular elastic-plastic deformation during fabrication processes such as welding, heat treatment, and mechanical processing. There are several factors attributed to the origin of residual stresses, tensile or compressive. The stresses can be determined by destructive ways or nondestructive ways by using X-ray or neutron diffraction. This paper presented application of neutron diffraction technique to the residual stress measurement using 20 mm thick welded stainless steel plate(100$\times$100 $\textrm{mm}^2$)

  • PDF

Precipitates Behavior and Microstructure of Friction Stir Welded 2519Al Alloy (마찰교반 용접한 2519Al 합금 용접부의 석출거동 및 미세조직)

  • Bae, Jong-Mo;Park, Tae-Won;Baik, Doo-Hyun;Kim, Hung-Ju;Chang, Woong-Seong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.109-111
    • /
    • 2006
  • In this study, microstructure and mechanical properties for the friction stir welded 2519Al-T87 alloy of the thickness of 38.8mm were studied using DSC, OM, SEM and micro hardness tester. DSC analysis show that GP Zone, ${\theta}'$ and $\theta$ phases in upper part and ${\theta}'$ and $\theta$ phase in lower part of the FSW zone. Recrystallized large grains are observed in HAZ, and elongated small and large grain in the TMAZ. In SZ, very small grains forms by high plastic deformation and heat from friction by tool and specimen.

  • PDF

A Study on shrinkage of High Strength Lightweight Concrete using by-products (산업부산물을 활용한 고강도경량 콘크리트 건조수축 특성연구)

  • 장주영;윤요현;이승조;박정민;김태곤;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.36-39
    • /
    • 2003
  • In this study, we made the high strength light weight concrete which was composed of the garnet minute powder to be the industry by-product in the YoungJoo region and the artificial light weight aggregate which the high temperature(1100℃) plastic process. The characteristic of the autogenous shrinkage had been considered about strength characteristic and the age passage In the following addition: The concrete's each unit quantity was determined 145,160,175㎏f/㎥.w/b and s/a was determined 30%, 43%, 45%. the each garnet's substitution ratio was determined 0, 10%. In this results, the compressive strength appeared greatly as the unit joining discretion grew bigger. The autogenous shrinkage ratio was increased rapidly until 7th day but it was reduced after 7th day regardless of the mixed factor. The autogenous shrinkage ratio which follows the change of the unit quantity and s/a increased together as the unit quantity and the s/a increases.

  • PDF

Study on Analysis Method for Welding Deformation of curved Block - Development of Analysis and Application of real Block (곡 블록 용접변형 해석법에 관한 연구 - 해석법 정립 및 실 블록 적용)

  • Lee Myeong-Su;Jang Gyeong-Bok;Yang Jin-Hyeok;Gang Seong-Su
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.77-79
    • /
    • 2006
  • To achieve high productivity of assembly hull blocks, it is important to predict welding deformations accurately and to apply these data to the production planning. In the deformation analysis of hull block, simplified methods (elastic analysis) such as inherent method, equivalent loading method and local & global approach are usually used instead of thermal-elastic-plastic analysis because of calculating time and cost. To be much more practical, these simplified methods should consider gravity effect of plate and contact condition between the plate and the positioning jig. In this research, using finite element method, practical predicting method for the welding deformation of the curved hull blocks with considering welding sequence, gravity effect and contact condition is proposed.

  • PDF