• 제목/요약/키워드: Plastic joining

검색결과 242건 처리시간 0.02초

고속가스플래임 용사법을 이용한 광촉매 $TiO_2$-생분해성 플라스틱 복합재료의 개발 (The Development of Functional Photocatalytic $TiO_2$-Biodegrdable Plastic Composite Material by HVOF Spraying)

  • 방희선;방한서
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.57-61
    • /
    • 2006
  • For the production of functional $TiO_2$-biodegradable plastic (polybutylene succinate:PBS) composite material with photocayalytic activity, we attempted to prepare $TiO_2$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated by the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photocatalytic performance of the coatings have been investigated. The results indicated that for both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio of 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_7$ coating exhibited a largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to much higher susceptibility of heat for 7 nm agglomerated powder. HVOF sprayed $P_{200}$ and $P_{30}$ coatings show better performance as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_7$ coatings did not show the photocatalytic activity, which may result from the extremely small reaction surface area to the photocatalytic activity and low anatase ratio.

판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석 (An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.104-115
    • /
    • 1999
  • 판재의 비드 용접과정에서 열응력과 각변형의 발생기구 및 크기를 판재 단면에 대한 2차원 유한 요소해석을 통해 규명하고자 할 때 판재의 3차원 특성을 판재 길이의 크기효과로 간주하여, 구속경계조 건으로 설정함으로써 2차원 해석으로도 더욱 실제에 근접한 현상해석이 가능함을 제안하고자 하였다. 먼저 용접 입열에 의한 판재 내부의 천이 온도분포를 해석하였고, 이를 열응력 해석에 활용하였다. 2차 원 열응력 해석에 있어, 용접도중에 단면 전체가 길이 방향으로 동일한 크기의 변위를 한다고 가정하여 일정 변위를 길이 방향 경계조건으로 설정하고, 판재의 길이에 따라 각변형의 발생이 구속된다고 가정 하여, 판재의 길이에 의한 구속효과를 상당 구속력으로 간주하여 이를 단면 부재의 회전방향에 대한 경 계조건으로 설정함으로써 판재의 3차원 특성을 고려하고자 하였다. 제안된 방법에 의한 응력 분포 형태, 각변형 크기 등의 해석 결과가 기존의 2차원 해석 결과에 비해 실제에 더 근접함을 보여 주었다.

  • PDF

압력용기용강의 고온파괴인성에 관한 연구 (A Study on HIGH TEMPERATURE FRACTURE TOUGHNESS of Pressure Vessel Steel SA516 at High Temperature.)

  • 박경동;김정호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 춘계학술발표대회 개요집
    • /
    • pp.228-231
    • /
    • 2001
  • Elastic-plastic fracture toughness $J_{1c}$ can be used as an effective design criterion in elastic plastic fracture mechanics. Most of these systems are operated at high temperature and $J_{1c}$ values are affected by temperature. therefore, the $J_{1c}$ valuse at high temperature must be determined for use of integrity evaluation and designing of such systems. Elastic-plastic fracture toughness $J_{1c}$ tests were performed on SA516 carbon steel plate and test results were analyzed according to ASTM E 813-8, ASTM 1813-89. Safety and integrity are required for reactor pressure vessels vecause pthey are operated in high temperature. there are single specimen method, which used as evaluation of safety and integrity for reactor pressure vessels. In this study, elastic-plastic fracture toughness$(J_{1c})$ and $J-\Delta{a}$ of SA 516/70 steel used as reactor pressure vessel steel are measured and evaluated at room Temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ according to unloading compliance method.

  • PDF

T-joint 용접부의 형상에 따른 역학적 메카니즘에 관한 연구 (A Study on the Mechanical Mechanism According to the Groove Shape of T-welded Joint)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.53-61
    • /
    • 1999
  • The use of thick plate in increasing in recent years due to the rapid expansion of chemical plants, nuclear plants, ships and other industrial plants. Welding is the most popular joining techniques employed in manufacturing industrial machineries and structures. Normally, Groove shapes are prepared according to appropriate rules and regulations such as KS, JIS, AWS, LR, DNV and etc. for various thicknesses of plate. However those groove angles tend to be too large. As a result of large groove angle, residual stress, deformation of material and strength reduction is obtained. Therefore, the reliability and safety of structures and machinery tend to be decreasing. Therefore, in this paper, theoretical as well as experimental study are carried out to find optimum groove shapes for T-welded joint of mild steel. The test specimen are made in same condition with simulation model. Welding residual stresses measurement by sectional cutting method. ⅰ) The mechanical difference for change the thickness of plate and groove angle are not appeared. ⅱ) In a mechanical point of view minimum preparation angle(40°) is more suitable than maximum groove angle(60℃). ⅲ) The measurement value and distribution of welding residual stresses are not effected largely by groove angle. It is mechanical restraint that mainly affect welding residual stresses distribution. In mechanical point of view minimum groove angle is more suitable than maximum groove angle. Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

전산유체역학을 활용한 마찰교반용접의 해석적 접근에서 표면추적을 위한 알고리즘 연구 (A study on an Interface Tracking Algorithm in Friction Stir Welding based on Computational Fluid Dynamics Analysis)

  • 김수덕;나석주
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.12-16
    • /
    • 2016
  • Friction stir welding(FSW) was studied using commercial tool, FLOW-3D. The purpose of this study is to suggest a method to apply frictional heat in Computational fluid dynamics(CFD) analysis. Cylindrical tool shape was used, and the interface cells between tool surface and workpiece were tracked by its geometrical relations in order to consider the frictional heat in FSW. After tracking the interface cells, average area concept was used to calculate the frictional heat, which is related to interface area. Also three-dimensional heat source and visco-plastic flow were modeled. The frictional heat generation rate calculated numerically from the suggested algorithm was validated with the analytical solution. The numerical solution was well matched with the analytical solution, and the maximum percentage of error was around 3%.

선체 호퍼너클 구조의 최종강도 및 피로강도 (Ultimate and Fatigue Strength of Ship Hopper Knuckles)

  • 김영한;정장영;백점기;김하수;김도현
    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.77-82
    • /
    • 2000
  • The aim of the present study is to investigate the characteristics of ultimate the fatigue strength of hopper knuckles in merchant vessels carrying bulk cargo or LNG/LPG/ The ultimate strength test is undertaken on the hopper knuckle model, subject to end tip load. A series of fatigue tests are carried out on the hopper knuckle models varying the level of the nominal stresses. The elasto-plastic finite element analysis is performed to examine the distribution of hot spot stresses near weld toe and also the progressive collapse behavior of the test model. S-N curves are developed based on the fatigue test results.

  • PDF

열 영향부의 시물레이션에 의한 12% Cr강의 용접성 평가 (Weldability of 12% Cr steel by thermally simulated HAZ)

  • 김재도
    • Journal of Welding and Joining
    • /
    • 제4권2호
    • /
    • pp.40-46
    • /
    • 1986
  • This investigation is concerned with the toughness and microstructure of manneristically simulated HAZ in 12% Cr steel. Unnotched specimens were subjected to weld thermal cycles a weld simulator. The parameters-peak temperatures, cooling rate, influence of PWHT and plastic deformation were considered. After weld simulation, the specimens were heat-treated, V-notched and impact tested. An optical metallographic examination was performed to correlate the HAZ toughness with microstructure. Also a fractographic examination was done to obtain information on the fracture mode. The toughness of the coarse grained zone and the part of HAZ subjected to a peak temperature range 700-800.deg. C are lower than the other parts. However, they are still high enough. The double PWHT cycle could not improve the HAZ toughness in present study. However, if the first PWHT is conducted before the work piece is cooled below $M_f$, it is expected that the double PWHA may be beneficial to the toughness of the HAZ. It is also expected that martensitic welding can be used on production welds.

  • PDF

오스테나이트계 스테인레스강의 마찰압접시 압접조직과 열적거동에 관한 연구 (A study on welding structure and thermal behavior in friction welding of austenitic stainless steel)

  • 강춘식;정태용
    • Journal of Welding and Joining
    • /
    • 제8권1호
    • /
    • pp.43-53
    • /
    • 1990
  • The transient temperature distribution in the continuous friction welding 304 stainless steel bars is investigated by experimental and analytical methods. It is calculated by F.D.M. (finite difference method). The heating pressure, the rotational speed and friction coefficient obtained from experiment are used to determine the heat input at the contacting surface. Thermal properties of the workpiece are the function of temperature. The calculated temperature is well coincided with the measured value. The grain size at weld interface is extremely small due to the severe plastic deformation at high temperature, and result of this refined zone reveals higher hardness value. Because the HAZ is very narror about 2-3 mm, welding defects do not occure.

  • PDF

초장파에 의한 이종재 마찰용접 강도해석 가능성에 관한 연구 (A Feasibility Study on Dissimilar Metals Friction Weld Strength Analysis by Ultrasonic Techniques)

  • 오세규;김동조
    • Journal of Welding and Joining
    • /
    • 제4권2호
    • /
    • pp.47-52
    • /
    • 1986
  • Friction Welds are formed by the mechanisms of diffusion as well as mechanical inter-locking. The severe plastic flow at the interface by the forge action of the process brings the subsurface so close together that detection of any unbounded area becomes very difficult. No reliable method is available so fat to determine the weld quality nondestructively. The paper presents an attempt to determine weld strength quantitatively using the ultrasonic pulseecho method. The new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. This coefficient provides a single quantitative measurement which involves both acoustic energy reflected at the welded interface as well as transmitted across the interface. As a result, it was known that the quantitative relationship between the coefficient and the weld strength (torsional strength) could be drawn.

  • PDF

신경회로망을 이용한 선상가열공정의 가열선 위치선정에 관한 연구 (Prediction of Heating-line Positions for Line Heating Process by Using a Neural Network)

  • 손광재;양영수;배강열
    • Journal of Welding and Joining
    • /
    • 제21권4호
    • /
    • pp.31-38
    • /
    • 2003
  • Line heating is an effective and economical process for forming flat metal plates into three-dimensional shapes for plating of ships. Because the nature of the line heating process is a transient thermal process, followed by a thermo elastic plastic stress field, predicting deformed shapes of plate is very difficult and complex problem. In this paper, neural network model o3r solving the inverse problem of metal forming is proposed. The backpropagation neural network systems for determining line-heating positions from object shape of plate are reported in this paper. Two cases of the network are constructed-the first case has 18 lines which have different positions and directions and the second case has 10 parallel heating lines. The input data are vertical displacements of plate and the output data are selected heating lines. The train sets of neural network are obtained by using an analytical solution that predicts plate deformations in line heating process. This method shows the feasibility that the neural network can be used to determine the heating-line positions in line heating process.