• Title/Summary/Keyword: Plastic fiber

Search Result 1,062, Processing Time 0.027 seconds

Experimental Study on the Removal of Biofouling from Specimens of Small Ship Constructions Using Water Jet (물 제트를 이용한 소형선박제작 시편의 선체부착생물 제거에 관한 실험적 연구)

  • Seo, Daewon;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1078-1085
    • /
    • 2022
  • Fouling organisms attached to a ship not only greatly increase the resistance of the ship as they grow on the hull but also cause disturbances in local marine ecosystems as they move with the ship. Accordingly, the International Maritime Organization has started discussing the removal of biofouling and evaluation of cleaning performance to prevent the migration of hull-fouling species. In this study, specimens of FRP(Fiber Reinforced Plastic), HDPE(High Density Polyethylene), and CFRP(Carbon Fiber Reinforced Plastic) materials used for small ship construction were cured in Gyeokpo Port (Jeonlakbuk-do) for about 80 days. Then, attached organism removal experiments were performed using a water jet nozzle. The results show that seaweeds, such as laver, were removed when the distance between the nozzle and the specimen was 1.8 cm and the pressure was 100 bar. Furthermore, it was confirmed that the cleaning of barnacles was possible only when the pressure was 200 bar or more.

Mechanical Characteristics of GF/recycled PET Thermoplastic Composites with Chopped Fiber According to Cross Section (단면형상에 따른 GF/rPET 열가소성 복합재료의 물리적 특성 연구)

  • Kim, Ji-hye;Lee, Eun-soo;Kim, Myung-soon;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Recently fiber-reinforced thermoplastic composites have attracted great interest from industry and study because they offer unique properties such as high strength, modulus, impact resistance, corrosion resistance, and damping reduction which are difficult to obtain in single-component materials. The demand for plastics is steadily increasing not only in household goods, packaging materials, but also in high-performance engineering plastic and recycling. As a result, the technology of recycling plastic is also attracting attention. In particular, many paper have studied recycling systems based on recycled thermoplastics. In this paper, properties of Glass Fiber Reinforced Thermoplastic(GFRTP) materials were evaluated using recycled PET for injection molding bicycle frame. The effect on thermal and mechanical properties of recycled PET reinforced glass chop fiber according to fiber cross section and fiber content ratio were studied. And it was compared void volume and torque energy by glass fiber cross section, which is round section and flat section. Mechanical characteristics of resulting in GF/rPET has been increased by increasing fiber contents, than above a certain level did not longer increased. And mechanical properties of flat glass fiber reinforced rPET with low void volume were most excellent.

A Study on the Crack Characteristics of the Syntetic Fiber Reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.59-65
    • /
    • 1999
  • This study has been performed to confirm the three dimensional effect of the crack reduction and the restrained effect of crack growth for the synthetic fiber reinforced soil. Two types of polyrpropylene fiber and low plastic clay(CL) were used for the test. And the test variable were fiber length and so on. The results of the study were summarized as follows ; 1) The mixing of synthetic fiber was effective in reducing crack growth due to adhesion between soil partlcles and synthetic fiber.l Especially initlal crack was delayed, as compared with the pure soil, for about 1 day in case of mono filament synthetic fiber and for about 1 or 2 days in case of fibrillated syntetic fiber. 2) As the content and length of synthetic fiber were increased , the effect of crack reduction was increased. It was found that 0.5% fibrillated synthetic fiber with 40mm length reinforced soil had about 3 times more effective than natural soils. 3) In case of the same fiber content and fiber length, the fibrillated synthetic fiber has nmore effective than the mono filament synthetic fiber for crack reduction.

  • PDF

The suture method using ribbon shaped knot in pediatric facial lacerations (소아 안면 열상 시 리본 모양 매듭법을 이용한 봉합법)

  • Sung, Hyoung Woo;Kim, Jin Woo;Shin, Han Kyung;Jung, Jae Hak;Kim, Young Hwan;Sun, Hook
    • Archives of Plastic Surgery
    • /
    • v.36 no.1
    • /
    • pp.122-125
    • /
    • 2009
  • Purpose: Stitching out in facial simple laceration on children, we use No.11 blade. But the procedure is technically demanded to take care of the uncooperative pediatric patient. When we suture a laceration on the pediatric patient, we apply this method using ribbon shaped knot. On stitching out, We pull one the edge of a stitching fiber easily without injury about normal tissue. Methods: We studied 54 pediatric patients who have facial lacerations for children under six years old, from May, 2006 to December, 2007 in Plastic Surgery department, emergency room. Among them 35 were male, 19 were female and age average was 3.9. Results: For following up dressing, ribbon shaped knot did not get loose. After stitching out in facial laceration on children, Major complication of infection, hematoma, dehiscence was not found. Conclusion: The advantage of this operation method using ribbon shaped knot when we Stitch out the fiber on the incorporative pediatric patients, is easy to perform and to reduce the stitching time, without sedation.

Low Loss Plastic Optical Fiber Coupler Incorporating a Polymer Tapering Waveguide Region (폴리머 테이퍼링 도파로 영역이 있는 저 손실 플라스틱 광섬유 커플러)

  • Kim, Kwang-Taek;Min, Seong-Hwan;Yun, Jung-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.867-871
    • /
    • 2012
  • In this paper, we proposed and demonstrated a low loss $1{\times}4$ type plastic optical fiber(POF) coupler incorporating a polymer tapering waveguide region. To avoid leakage loss at the interfaces between the POF and the polymer waveguide, we employed two POF transition regions, in which the cross section of the POF is adiabatically converted from a circular to a rectangular shape without change of its cross-section area. The device was fabricated based on a injection mold made of a silicon rubber. The fabricated POF coupler showed 1.33 dB of excess loss and 2.2 dB of flatness.

Circular Fresnel POF(Plastic Optical Fiber) Daylighting System Performance Evaluation Study (원형 프레넬 집광형 POF 주광 조명시스템 성능 평가 연구)

  • Kang, Eun-Chul;Choi, Yong-Jun;Yoon, Kwang-Sik;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • CF(Circular Fresnel) POF(Plastic Optical Fiber) daylighting system is a beam daylighting system utilizing solar direct beam radiation. In this study, a CF POF daylighting system has been introduced, developed and applied to KIER test buildings. The CF POF daylighting system consists of three parts: light collector, light transmitter and light diffuser. The light collector includes a Circular Fresnel lens focusing solar direct illuminance by sun tracking. The light transmitter contains the POF cable which has light transmission loss of 4.5% per meter. The light diffuser has about 80% diffuser efficiency. This study aims to evaluate of POF daylighting system performance. At the results of a CFPOF system performance evaluation, the theoretical CFPOF system efficiency was 41.9% and the actual CFPOF system efficiency at the KIER test building was 37.5%. The difference was due partly to the connecting efficiency.

p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets (탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.

Finite Element Analysis of Carbon Fiber Reinforced Plastic Frame for Multi-legged Subsea Robot (다관절 복합이동 해저로봇을 위한 탄소섬유 복합소재 프레임의 구조 해석)

  • Yoo, Seong-Yeol;Jun, Bong-Huan;Shim, Hyungwon;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.65-72
    • /
    • 2013
  • This paper describes a finite element analysis (FEA) of the body frame of a subsea robot, Crabster200 (CR200). CR200 has six legs for mobility instead of screw type propellers, which distinguishes it from previous underwater robots such as remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Another distinguishing characteristic is the body frame, which is made of carbon fiber reinforced plastic (CFRP). This body frame is designed as a rib cage structure in order to disperse the applied external loads and reduce the weight. The frame should be strong enough to support many devices for exploration and operation underwater. For a reasonable FEA, we carried out specimen tests. Using the obtained material properties, we performed a modal analysis and FEA for CR200 with a ready posture. Finally, this paper presents the FEA results for the CFRP body frame and the compares the characteristics of CFRP with conventional material, aluminum.

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon;Kim, Jinhong;Park, Jae Hyung;Kim, Seunghyeon;Lim, Taeseob;Kim, Jin Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3398-3402
    • /
    • 2022
  • We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.