• Title/Summary/Keyword: Plastic equilibrium method

Search Result 60, Processing Time 0.025 seconds

Moment Redistribution for Moment-Resisting Frames using Secant Stiffness Analysis Method (할선강성해석법을 이용한 모멘트저항골조의 모멘트 재분배)

  • Park, Hong-Gun;Kim, Chang-Soo;Eom, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.221-224
    • /
    • 2008
  • A secant stiffness linear analysis method was developed for moment redistribution of moment-resisting frames. In the proposed method, rotational spring models are used for plastic hinges of the members whose flexural moments are needed to be redistributed. At the plastic hinges, secant stiffness is used to address the effect of the flexural stiffness reduced by inelastic deformation. Linear analysis is repeated with adjusted secant stiffness until the flexural equilibrium is satisfied in the structure and members. By using the secant stiffness analysis, the effect of the inelastic deformation on the moment redistribution can be considered. Further, the safety of plastic hinges can be evaluated by comparing the inelastic rotation resulting from the secant stiffness analysis with the rotational capacity of the plastic hinges. For verification, the proposed method was applied to a continuous beam tested in previous study. A application example for a multiple story moment-resisting frame was presented.

  • PDF

Distribution of Optimum Yield-Strength and Plastic Strain Energy Prediction of Hysteretic Dampers in Coupled Shear Wall Buildings

  • Bagheri, Bahador;Oh, Sang-Hoon;Shin, Seung-Hoon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1107-1124
    • /
    • 2018
  • The structural behavior of reinforced concrete coupled shear wall structures is greatly influenced by the behavior of their coupling beams. This paper presents a process of the seismic analysis of reinforced concrete coupled shear wall-frame system linked by hysteretic dampers at each floor. The hysteretic dampers are located at the middle portion of the linked beams which most of the inelastic damage would be concentrated. This study concerned particularly with wall-frame structures that do not twist. The proposed method, which is based on the energy equilibrium method, offers an important design method by the result of increasing energy dissipation capacity and reducing damage to the wall's base. The optimum distribution of yield shear force coefficients is to evenly distribute the damage at dampers over the structural height based on the cumulative plastic deformation ratio of the dissipation device. Nonlinear dynamic analysis indicates that, with a proper set of damping parameters, the wall's dynamic responses can be well controlled. Finally, based on the total plastic strain energy and its trend through the height of the buildings, a prediction equation is suggested.

Plastic Design Method for Steel Skeletal Structure based on the Least Norm Stress Field (최소노름 응력장를 이용한 구조물의 소성해석법)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.131-137
    • /
    • 2006
  • This study presents a new stress analysis method to be substituted for the elastic analysis in such a plastic design procedure. This method is accompanied by an efficient mathematical tool which can be easily handled by personal computer. The method also easily accepts arbitrary strategies by the designer for selection member size.

  • PDF

Finite Element Analysis of a Cold forging Process Having a Floating Die (부유금형을 가진 냉간단조 공정의 유한요소해석)

  • 전만수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.103-107
    • /
    • 1999
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

Study on the Development of Efficient Vitrification of Human Blastocysts (인간포배기 배아의 효과적인 유리화 동결법의 개발을 위한 연구)

  • Lee, Sang-Min;Lee, Ju-Hee;Lee, Sang-Won;Lee, Seoung-Min;Yoon, San-Hyun;Lim, Jin-Ho;Park, Huem-Dai;Lee, Seong-Goo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.3
    • /
    • pp.241-248
    • /
    • 2003
  • Objective: The purpose of this study was to evaluate the survival rate of vitrified blastocyst according to the freezing vessels, equilibration time in cryoprotectant and artificial dehydration method. Methods: Human blastocysts were vitrified after loading onto the plastic straw, open-pulled straw (OPS), electron microscopy grid (EM grid) for 1.5 min or 3 min. They also were directly plunged into LN2 within 30sec. For artificial shrinkage of blastocysts, 36 gauge fine needle was pushed at the cellular junction of the trophectoderm into the blstocoele cavity until it shrank without damage of inner cell mass. Results: The survival rate of vitrified blastocysts on plastic straw, OPS, EM grid as freezing vessels were 26.7, 13.0 and 60.5%, respectively. The survival rate of EM grid was significantly higher than that of plastic straw and OPS (p<0.05). For 1.5 min equilibrium, the survival rates of early blastocyst (EB), middle blastocyst (MB) and late blastocyst (LB) were 64.4, 81.0, and 20.0% respectively. For 3 min equilibrium, the survival rates of EB, MB, and LB were 69.9, 50.0 and 57.5% respectively. The survival rates of EB and MB were significantly higher than that of LB in 1.5 min equilibrium group (p<0.05), however, the significance was not observed in 3 min equilibrium groups. In cytoplasmic shrinkage before vitrification, the survival rates of EB, MB and LB were 92.9, 100 and 75.9% respectively. The survival rate of MB was significantly higher than that of LB (p<0.05). The survival rates of vitrified blastocysts by artificial dehydration and slow-frozen blastocysts were not significantly different as 88.9 and 66.7%, respectively. Conclusion: This study showed that the vitrification of human blastocysts using EM grid and artificial dehydration is an effective method. Therefore, these methods would be an useful techniques for blastocyst cryopreservation.

Ultimate Load Analysis of Axisymmetric Shells of Revolution Subjected to External Pressure (외압(外壓)을 받는 축대칭(軸對稱) Shell의 한계하중(限界荷重)에 관한 연구(硏究))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 1983
  • This paper describes the application of the finite element method to the large deflection elastic plastic analysis and ultimate load calculation of axisymmetric shell of revolution with initial imperfection subjected to external pressure. The nonlinear equilibrium equations are linearized by the successive incremental method and are solved by the combination of load increment and iteration scheme with considering plastic deformation theory. To get the more realistic effect of large deflection, corrected coordinats and directions of applied load ar every load increment steps are used. The effects of the plasticity, initial imperfection and the shape of shells on the ultimate load of clamped circular cap under external pressure are investigated. Consequently, the following conclusions are obtained; (1) At same geometric parameter $\lambda$, each shape of clamped circular caps yield same elastic ultimate loads in both cases, i.e. with and without initial imperfections, whereas, in the case of elastic-plastic state the shell becomes thicker, the ultimate loads are getting smaller. (2) The effects of initial imperfection to ultimate load are most significant in the elastic case and are more senstive in the elastic-plastic state with the thinner shells.

  • PDF

A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass

  • Zou, Jin-Feng;Yang, Tao;Ling, Wang;Guo, Wujun;Huang, Faling
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.225-234
    • /
    • 2019
  • A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass is investigated, which is compatible with Mohr-Coulomb and generalized Hoek-Brown failure criteria. Based on finite difference method, plastic region is divided into a finite number of concentric rings whose thicknesses are determined internally to satisfy the equilibrium and compatibility equations, the material parameters of the rock or soil mass are assumed to be the same in each ring. For the strain-softening behavior, the strength parameters are assumed to be a linear function of deviatoric plastic strain (${\gamma}p^*$) for each ring. Increments of stress and strain for each ring are calculated with the finite difference method. Assumptions of large-strain for soil mass and small-strain for rock mass are adopted, respectively. A new numerical stepwise approach for limited pressure and plastic radius are obtained. Comparisons are conducted to validate the correctness of the proposed approach with Vesic's solution (1972). The results show that the perfectly elasto-plastic model may underestimate the displacement and stresses in cavity expansion than strain-softening coefficient considered. The results of limit expansion pressure based on the generalised H-B failure criterion are less than those obtained based on the M-C failure criterion.

Estimation Method of Local Elastic-Plastic Strain at Thinning Area of Straight Pipe Under Tension Loading (인장하중을 받는 직선 배관 감육부의 국부 탄소성 변형률 평가 방법)

  • An Joong-Hyok;Kim Yun-Jae;Yoon Kee-Bong;Ma Young-Wha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.533-542
    • /
    • 2006
  • In order to assess the integrity of pipes with local thinning area, the plastic strain as well as the elastic strain at the root of thinned region are required particularly when fluctuating load is applied to the pipe. For estimating elastic-plastic strain at local wall thinning area in a straight pipe under tensile load, an estimation model with idealized fully circumferential constant depth wall thinning area is proposed. Based on the compatibility and equilibrium equations a nonlinear estimation equation, from which local elastic-plastic strain can be determined as a function of pipe/defect geometry, material and the applied strain was derived. Estimation results are compared with those from detailed elastic-plastic finite element analysis, which shows good agreements. Noting that practical wall thinning in nuclear piping has not only a circular shape but also a finite circumferential length, the proposed solution for the ideal geometry is extended based on two-dimensional and three-dimensional numerical analysis of pipes with circular wall thinning.

An Iterative Scheme for Resolving Unbalanced Forces Between Nonlinear Flexural Bending and Shear Springs in Lumped Plasticity Model (비선형 휨 및 전단 힌지 사이의 불평형력 해소를 위한 수렴계산 기법)

  • Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-235
    • /
    • 2022
  • For a member model in nonlinear structural analysis, a lumped plastic model that idealizes its flexural bending, shear, and axial behaviors by springs with the nonlinear hysteretic model is widely adopted because of its simplicity and transparency compared to the other rigorous finite element methods. On the other hand, a challenging task in its numerical solution is to satisfy the equilibrium condition between nonlinear flexural bending and shear springs connected in series. Since the local forces between flexural and shear springs are not balanced when one or both springs experience stiffness changes (e.g., cracking, yielding, and unloading), the additional unbalanced force due to overshooting or undershooting each spring force is also generated. This paper introduces an iterative scheme for numerical solutions satisfying the equilibrium conditions between flexural bending and shear springs. The effect of equilibrium iteration on analysis results is shown by comparing the results obtained from the proposed method to those from the conventional scheme, where the equilibrium condition is not perfectly satisfied.

Numerical Simulation of Drawbead Formation in a Binder Wrap Process by an elasto-Plastic Finite Element Method (탄소성 유한요소법에 의한 드로우비드 성형 해석)

  • Choi, Tae-Hoon;Huh, Hoon;Lee, Jang-Hee;Park, Chun-Dal
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.196-202
    • /
    • 1995
  • Drawbead formulation is the first process together with a binder wrap process in a sheet metal forming process. The purpose of a drawbead is to control the flow of the metal into the die in panel press forming. To simulate the drawbead formation process, an elasto-plastic finite element formulation is derived from the equilibrium equation an drelated boundary conditions considering the proper contact conditons. The developed finite element program is applied to drawbead formation in the plane strain condition. The simulation of drawbead formation produces the distribution fo stress and strain along the bead and the resultant elongation of the sheet in the cavity region with respect to various cavity dimensions of the sheet as well as the punch force of a drawbead and the amount of draw-in with respect to the stroke fo a drawbead. The numerical resutls provides the fundamental information as a boundary condition to analyze the complex binder wrap phenomena and panel press forming in simple way.

  • PDF