• 제목/요약/키워드: Plastic element

검색결과 2,204건 처리시간 0.029초

Elasto-plastic Analysis of Circular Cylindrical Shell under Horizontal Load by Rigid-bodies Spring Model

  • 박강근
    • 한국공간구조학회논문집
    • /
    • 제6권3호
    • /
    • pp.87-92
    • /
    • 2006
  • This paper is a study on the experiment and elasto-plastic discrete limit analysis of reinforced concrete circular cylindrical shell by the rigid-bodies spring model. In the rigid bodies-spring model, each collapsed part or piece of structures at the limiting state of loading is assumed to behave like rigid bodies. The present author propose new discrete elements for elasto-plastic analysis of cylindrical shell structures, that is, a rectangular-shaped cylindrical element and a rhombus-shaped cylindrical element for the improvement and expansion of this rigid-bodies spring model. In this study, it is proposed how this rigid element-bodies spring model can be applied to the elasto-plastic discrete limit analysis of cylindrical shell structures. Some numerical results of elasto-plastic discrete limit analysis and experimental results such as the curve of load-displacement and the yielding and fracturing pattern of circular cylindrical shell under horizontal load are shown.

  • PDF

유한요소 극한해석을 이용한 소성변형에서의 구조물의 위상최적화 (Topology Optimization of Structures in Plastic Deformation using Finite Element Limit Analysis)

  • 이종섭;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.603-608
    • /
    • 2008
  • It is well known that the topology optimization for plastic problem is not easy since the iterative analyses to evaluate the objective and cost function with respect to the design variation are very time-consuming. The finite element limit analysis is an efficient tool which is possible to predict collapse modes and sequential collapse loads of a structure considering not only large deformation but also plastic material behavior with moderate computing cost. In this paper, the optimum topology of a structure considering large and plastic deformation is obtained using the finite element limit analysis. To verify the constructed optimization code, topology optimizations of some typical problems are performed and the optimal topologies by elastic design and plastic design are compared.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage

  • Nho, In-Sik;Yim, Sahng-Jun
    • Journal of Hydrospace Technology
    • /
    • 제1권1호
    • /
    • pp.111-124
    • /
    • 1995
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including a large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic analysis theory. It can manage the anisotropic tonsorial damage evolved during the time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problems including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally a finite element analysis code for two-dimensional plane problems was developed and the applicability and validity of the numerical model was investigated through some numerical examples. Calculations showed reasonable results in both geometrical nonlinear problems due to large deformation and material nonlinearity including the damage effect.

  • PDF

유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석 (Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method)

  • 박재학;박상윤
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.

Modeling of local buckling in tubular steel frames by using plastic hinges with damage

  • Inglessis, Pether;Medina, Samuel;Lopez, Alexis;Febres, Rafael;Florez-Lopez, Julio
    • Steel and Composite Structures
    • /
    • 제2권1호
    • /
    • pp.21-34
    • /
    • 2002
  • A model of the process of local buckling in tubular steel structural elements is presented. It is assumed that this degrading phenomenon can be lumped at plastic hinges. The model is therefore based on the concept of plastic hinge combined with the methods of continuum damage mechanics. The state of this new kind of inelastic hinge is characterized by two internal variables: the plastic rotation and the damage. The model is valid if only one local buckling appears in the plastic hinge region; for instance, in the case of framed structures subjected to monotonic loadings. Based on this damage model, a new finite element that can describe the development of local buckling is proposed. The element is the assemblage of an elastic beamcolumn and two inelastic hinges at its ends. The stiffness matrix, that depends on the level of damage, the yielding function and the damage evolution law of the two hinges define the new finite element. In order to verify model and finite element, several small-scale frames were tested in laboratory under monotonic loading. A lateral load at the top of the frame was applied in a stroke-controlled mode until local buckling appears and develops in several locations of the frame and its ultimate capacity was reached. These tests were simulated with the new finite element and comparison between model and test is presented and discussed.

Finite element analysis of long-term changes of the breast after augmentation mammoplasty: Implications for implant design

  • Myung, Yujin;Lee, Jong-Gu;Cho, Maenghyo;Heo, Chan Yeong
    • Archives of Plastic Surgery
    • /
    • 제46권4호
    • /
    • pp.386-389
    • /
    • 2019
  • The development of breast implant technology continues to evolve over time, but changes in breast shape after implantation have not been fully elucidated. Thus, we performed computerized finite element analysis in order to better understand the trajectory of changes and stress variation after breast implantation. The finite element analysis of changes in breast shape involved two components: a static analysis of the position where the implant is inserted, and a dynamic analysis of the downward pressure applied in the direction of gravity during physical activity. Through this finite element analysis, in terms of extrinsic changes, it was found that the dimensions of the breast implant and the position of the top-point did not directly correspond to the trajectory of changes in the breast after implantation. In addition, in terms of internal changes, static and dynamic analysis showed that implants with a lower top-point led to an increased amount of stress applied to the lower thorax. The maximum stress values were 1.6 to 2 times larger in the dynamic analysis than in the static analysis. This finding has important implications for plastic surgeons who are concerned with long-term changes or side effects, such as bottoming-out, after anatomic implant placement.

유한요소 교호법을 이용한 삼차원 균열의 탄소성 J 적분 해석 (Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method)

  • 박재학
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.145-152
    • /
    • 2009
  • SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook.

유한요소법을 이용한 다공성금속의 고온변형해석 (Analysis of the Hot Deformation of Porous metals by Finite Element Method)

  • 한흥남;이용기;오규환;이동녕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.149-156
    • /
    • 1994
  • The thermomechanical elasto-plastic problems in hot forging of the porous metals are analyzed using the thermo-elasto-plastic finite element method. This finite element program has been formulated using the yield condition advanced by Lee and Kim and developed using the thermo-elasto-plastic time integration procedure. Thermomechanical responses and densification behaviors of the porous metals during hot forging are calcucated at various initial relative densities, strain rates and temperatures. The calculated results are in good agreement with experimental data.

  • PDF

대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석 (Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process)

  • 정동원;김귀식;양동열
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF

온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링 (Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation)

  • 류희룡;조명환;유인호;문두경
    • 농업과학연구
    • /
    • 제41권4호
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.