• Title/Summary/Keyword: Plastic damage

Search Result 820, Processing Time 0.025 seconds

Advanced peri-implantitis cases with radical surgical treatment

  • McCrea, Shane J.J.
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Purpose: Peri-implantitis, a clinical term describing the inflammatory process that affects the soft and hard tissues around an osseointegrated implant, may lead to peri-implant pocket formation and loss of supporting bone. However, this imprecise definition has resulted in a wide variation of the reported prevalence; ${\geq}10%$ of implants and 20% of patients over a 5- to 10-year period after implantation has been reported. The individual reporting of bone loss, bleeding on probing, pocket probing depth and inconsistent recording of results has led to this variation in the prevalence. Thus, a specific definition of peri-implantitis is needed. This paper describes the vast variation existing in the definition of peri-implantitis and suggests a logical way to record the degree and prevalence of the condition. The evaluation of bone loss must be made within the concept of natural physiological bony remodelling according to the initial peri-implant hard and soft tissue damage and actual definitive load of the implant. Therefore, the reason for bone loss must be determined as either a result of the individual osseous remodelling process or a response to infection. Methods: The most current Papers and Consensus of Opinion describing peri-implantitis are presented to illustrate the dilemma that periodontologists and implant surgeons are faced with when diagnosing the degree of the disease process and the necessary treatment regime that will be required. Results: The treatment of peri-implantitis should be determined by its severity. A case of advanced peri-implantitis is at risk of extreme implant exposure that results in a loss of soft tissue morphology and keratinized gingival tissue. Conclusions: Loss of bone at the implant surface may lead to loss of bone at any adjacent natural teeth or implants. Thus, if early detection of peri-implantitis has not occurred and the disease process progresses to advanced peri-implantitis, the compromised hard and soft tissues will require extensive, skill-sensitive regenerative procedures, including implantotomy, established periodontal regenerative techniques and alternative osteotomy sites.

The Evaluation of Seismic Performance and the Design of Initial Member Sections for Architectural Steel Structures (건축 강구조물의 초기 부재단면 설계 및 내진성능에 관한 연구)

  • Lee, Sang-Ju;Lee, Dong-Woo;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.101-109
    • /
    • 2006
  • An initial member sections of steel structures is selected by experience of expert building structural designers. And appropriate member section is designed by repeat calculation through structural analysis. Therefore an initial assumption of member section is necessary for saving the time for structural design and is important to acquire safety of building structures. Also brace damper are generally used to prevent or decrease stuctural damage by its hysteretic behavior in building structures subjected to strong earthquake. Based on plastic design, the initial section of members for architectural steel structures with hysteretic damper braces is presented and seismic effect of structural behavior by the ratio of damper stiffness to structural story stiffness is estimated in this paper.

  • PDF

Method for Determining Thickness of Rubber Fenders of a Tripod Type Offshore Wind Turbine Substructure (해상풍력 삼각지주형 하부구조물의 충격손상방지용 고무펜더의 두께결정 방법)

  • Lee, Kang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.490-496
    • /
    • 2012
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in offshore wind turbine on impact of barge. The collision between offshore wind turbine and barge is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all effects and sequences during the collision. On applying the impact force of a barge to the offshore wind turbine, the maximum acceleration, internal energy, and plastic strain are calculated for each load case using the finite element method. A parametric study is conducted with the experimental data in terms of the velocity of barge, thickness of the offshore wind turbine, and thickness and Mooney-Rivlin coefficient of the rubber fender. Through the analysis proposed in this study, it is possible to determine the proper size and material properties of the rubber fender and the optimal moving conditions of barge.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

Effect of harvesting time and night temperature on tuber production of calla (Zantedeschia) (수확시기와 야간온도가 유색칼라(Zantedeschia)의 구근생산에 미치는 영향)

  • Nam, Chun-Woo;Yoo, Dong-Lim;Kim, Su-Jeong;Suh, Jong-Teak;Paek, Kee-Yoeup;Lee, Sang Gyu;Yoon, Moo Kyung
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.271-276
    • /
    • 2013
  • This experiment was carried out to determine optimal culture conditions for the production of tubers of Calla (Zantedeschia elliottiana 'Golden Affair' and 'Black Magic') in Korea highland. In vitro produced plantlets and tuberlets of Calla 'Golden Affair' and 'Black Magic' were planted plastic film greenhouse and grown for 100, 120, 140 days, with different night temperature treatments ($0{\sim}10^{\circ}C$ : no heating, 10, $15^{\circ}C$). In both cultivars, tuber size(tuber diameter, tuber height) and tuber weight increased with increasing cultivation period when the night temperature was maintained at $10^{\circ}C$. The largest tuber diameter in vitro produced plantlets was 5.8cm in 'Black Magic' and 3.2cm in 'Golden Affair', and daily tuber growth rate was 1.110g in 'Black Magic' and 0.092g in 'Golden Affair' under the culture conditions. Consequently we think that tuber harvest date was Oct. 30 and night temperature was $10^{\circ}C$ and no heating that was proper method of tuber production. However we had selection of $10^{\circ}C$ treatment for tuber production because it appeared freezing damage occasionally in highland late in October.

Microsurgical Reconstruction of Severe Radionecrotic Wounds Following Mastectomy (흉부의 심한 방사선 괴사 환부에 대한 미세 수술적 재건)

  • Ahn, Hee-Chang
    • Archives of Reconstructive Microsurgery
    • /
    • v.7 no.2
    • /
    • pp.114-121
    • /
    • 1998
  • The purpose of this study is to investigate the appropriate management of severe radionecrotic wounds of the anterior chest wall associated with infection of the soft tissues and ribs and exposure of vital structures(heart and lung), and present our strategies for reconstruction of these complicated patients. 9 patients have undergone radical debridement and immediate microsurgical reconstruction for severe radionecrotic wounds of the anterior chest wall over last 7 years. All patients had extensive osteomyelitis of the ribs or sternum, and chronic infection or cutaneous fistulae. 2 patients had pericardial effusions due to longstanding inflammation, and 6 patients had pleural effusions. 2 patients had ipsilateral lung collapse. 10 free flaps were performed for coverage of the huge defects. One patient required 2 free flaps to control the inflammation. 8 free TRAM flaps were used for coverage of the defects and in addition, the rectus abdominis muscle was packed into any deep cavity. 1 patients underwent latissimus dorsi muscle free flap because of previous abdominal surgery. After extensive debridement of the infected, radionecrotic wounds, all 10 free flaps were successful. All the extensive radionecrotic defects of the anterior chest wall were completely healed. Free flaps successfully covered the exposed vital structures of the heart and lungs. Patients with severe radionecrotic defects of the anterior chest wall after ablative breast cancer surgery and radiotherapy were successfully treated by radical debridement and immediate free flap surgery. The TRAM flap together with the rectus muscle is the treatment of choice for these huge defects. The latissimus dorsi muscle flap was the second choice in patients with previous abdominal surgery. The recipient vessel should be carefully selected because of possible radiation damage and inflammation.

  • PDF

Fracture Behavior Analysis in CFRP Specimens by Acoustic Emission and Ultrasonic Test (음향방출 및 초음파시험을 이용한 CFRP 시험편의 파괴 거동 해석)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.251-260
    • /
    • 2001
  • Damage Profess of CFRP laminates under monotonic tensile test was characterized by the correlation between Acoustic Emission(AE) and Ultrasonic Test(UT). The amplitude distribution of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pullout and fiber fracture as load is increased. In addtion, the characteristics of ultrasonic amplitude attenuation are useful lot analysis of the different type of fracture mechanism. Different orientation of carbon fiber reinforced plastic specimens were used to investigate the AE amplitude range and ultrasonic amplitude attenuation. Finally, loading-unloading tests were carried out to check Felicity effect. During the tests, ultrasonic amplitude attenuation was investigated at the same time and compared with AE parameters. The result showed that two parameters of both AE and UT could be effectively used for analysis of fracture mechanism in CFRP laminates.

  • PDF

Integrated Fitness-for-service Program for Natural Gas Transmission Pipeline (천연가스 공급배관의 사용적합성 통합프로그램)

  • Kim, Woo-Sik;Kim, Young-Pyo;Kim, Cheol-Man;Baek, Jong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • For fitness-for-service analyses of underground natural gas pipelines, engineering assessment methods against possible defects need to be developed. The assessment methods for high pressure pipeline of KOGAS, was developed using the full size pipe burst tests and the finite element analysis. It included the defect assessment methods for a single and multi-corrosion, corrosion in girth welding part, corrosion in seam welding part, the mechanical damage defects as dent and gouge, crack and large plastic deformation of API 5L X65 pipe. In addition, we developed method to assess pipeline integrity by internal and external load to buried pipeline. Evaluation results were compared with other methods currently being applied to the gas pipeline. The program of Windows environment is made for easily using assessment methods. It provides a consistent user interface, so non-professional technician can easily and friendly use the FFS program from company intranet. Several evaluation programs is easily installed using one installer. Each program constitutes a common input interface and the output configuration program, and evaluation result store and can be recalled at any time. The FFS program based on independent evaluation method is used to evaluate the integrity and safety of KOGAS pipeline, and greatly contribute to safe and efficient operation of pipeline. This paper presents experimental, analytical and numerical investigations to develop the FFS methods for KOGAS pipeline, used as high pressure natural gas transmission pipeline within KOREA. Also, it includes the description of the integrated program for FFS methods.

  • PDF

Advanced Analysis of Connections to Concrete-Filled Steel Tube Columns using the 2005 AISC Specification (AISC 2005 코드를 활용한 콘크리트 충전 합성기둥의 해석과 평가)

  • Park, Ji-Woong;Rhee, Doo-Jae;Chang, Suong-Su;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.9-21
    • /
    • 2012
  • Concrete filled steel tube (CFT) columns have been widely used in moment resisting frame structures both in seismic zones. This paper discusses the design of such members based on the advanced methods introduced in the 2005 AISC Specification and the 2005 Seismic Provisions. This study focuses particularly on design following both linear and nonlinear methods utilizing equivalent static and dynamic loads for low-rise moment frames. The paper begins with an examination of the significance of pseudo-elastic design interaction equations and the plastic ductility demand ratios due to combined axial compressive force and bending moment in CFT members. Based on advanced computational simulations for a series of five-story composite moment frames, this paper then investigates both building performance and new techniques to evaluate building damage during a strong earthquake. It is shown that 2D equivalent static analyses can provide good design approximations to the force distributions in moment frames subjected to large inelastic lateral loads. Dynamic analyses utilizing strong ground motions generally produce higher strength ratios than those from equivalent static analyses, but on more localized basis. In addition, ductility ratios obtained from the nonlinear dynamic analysis are sufficient to detect which CFT columns undergo significant deformations.

A Sunglasses Design to Prevent Snow Blindness at High Altitude (설맹 방지를 위한 고소등반용 선글라스 디자인)

  • Choi, Byung-Jin;Jang, Joon-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.19-22
    • /
    • 2007
  • Recently, the population of people exploring High Mountain trekking or expedition is increasing as an increase in the backpackers. Many accidents occurring at High Mountain above 6,000 m are the results of snow blindness. The damage of cornea and/or retina is direct cause of snow blindness. The UV intensity increases on the hand, along with the altitude caused by decrease in the atmospheric pressure, on the other hand the reflections by bright snow at high mountain area. And it increases approximately 3 times and 4 times higher than the ground level at altitude of 4,000 m and 8,000 m, respectively. The use of sunglasses is more favorable than goggles for the protection of snow blindness at High Mountains. The eye frames that have high mechanical strength and the plastic lenses which can protect UV 100% are recommended. The attachable shielding pads are needed to prevent the incident UV light reflected or scattered from the gap between glasses frame and face. The sunglasses must have flexible and long temples to wind the ears adequately for the prevention of detachment during climbing and it is recommended that the metal frame to be coated with plastics to prevent the eye surroundings from frostbite.

  • PDF