• 제목/요약/키워드: Plastic collapse

검색결과 296건 처리시간 0.023초

굽힘붕괴를 수반하는 알루미늄 사각관의 시험법에 관한 연구 (A Study on the Evaluation Method for Bending Collapse Behavior of an Aluminum Square Tube)

  • 이성혁;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.123-126
    • /
    • 2002
  • To evaluate the bending collapse behavior of an aluminum square tube, a finite element simulation for the four-point bending test was suggested. Local buckling deformation near the center of an aluminum tube specimen was induced which has been partly inserted by two steel bars. Simulation results showed good agreements with those of experiment.

  • PDF

그릴리지 구조의 소성 붕괴 설계 (New-directional Approach : Plastic Collapse Design of Grillages)

  • 김윤영;박제웅
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.96-103
    • /
    • 2000
  • This research is a new design method, which will be presented as a basic concept for a more efficient minimum weight design of grillages, as an attempt to describe true collapse mechanism in as overall search as possible. It serves as introduction to the numerical technique of Linear Programming(LP) and Automatic Modified Direct Plastic Frame Analysis(AMDPFA). Attention is directed to both analysis and design, and emphasis is placed on the physical significance of Systematic Searching Techniques(SST) involved. In weight minimum grillages design, the parameterisation study in optimum beam configuration which was carried out over the range of beam sections for a given plastic section modulus likely to occur in structures by suing an adaptive stochastic optimisation technique, Genetic Algorithms.

  • PDF

A finite element yield line model for the analysis of reinforced concrete plates

  • Rasmussen, L.J.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.395-409
    • /
    • 1998
  • This paper concerns the development and implementation of an orthotropic, stress resultant elasto-plastic finite element model for the collapse load analysis of reinforced concrete plates. The model implements yield line plasticity theory for reinforced concrete. The behaviour of the yield functions are studied, and modifications introduced to ensure a robust finite element model of cases involving bending and twisting stress resultants ($M_x$, $M_y$, $M_{xy}$). Onset of plasticity is always governed by the general yield-line-model (YLM), but in some cases a switch to the stress resultant form of the von Mises function is used to ensure the proper evolution of plastic strains. Case studies are presented, involving isotropic and orthotropic plates, to assess the behaviour of the yield line approach. The YLM function is shown to perform extremely well, in predicting both the collapse loads and failure mechanisms.

복잡(複雜)한 형상(形狀)의 초기(初期)처짐을 가진 실선(實船)의 Panel의 압괴강도(壓壞强度) 간이추정법(簡易推定法) (Estimation of the Ultimate Compressive Strength of Actual Ship Panels with Complex Initial Deflection)

  • 백점기;김건
    • 대한조선학회지
    • /
    • 제25권1호
    • /
    • pp.33-46
    • /
    • 1988
  • This paper describes a simplified method for estimation of the ultimate compressive strength of actual ship panels with initial deflection of complex shape. The proposed method consists of the elastic analysis using the large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection analysis, only one term of Fourier series for the plate deflection is considered. The results of the proposed method are in good agreement with those calculated by the elasto-plastic large deflection analysis using F.E.M. and the computing time of the proposed method is extremely short compared with that of F.E.M.

  • PDF

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.

굽힘하중을 받는 알루미늄 사각관 보의 국부적 좌굴붕괴 거동에 관한 연구 (A Study on the Local Buckling Collapse Behavior of an Aluminum Square Tube Beam under a Bending Load)

  • 이성혁;최낙삼
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2011-2018
    • /
    • 2003
  • To analyze the bending collapse behavior of an aluminum square tube beam under a bending load, a finite element simulation for the four-point bending test has been performed. Using an aluminum tube beam specimen partly inserted with two steel bars, the local buckling deformation near the center of the tube beam was induced. The maximum bending load and the bending collapse behavior obtained from the numerical simulation were in good agreement with experimental results. Using a combination of the four-point bending test and its finite element simulation, analysis of the local buckling and the accompanied bending collapse behavior of aluminum tube beam could be quantitative accomplished.

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.

경량화용 Al/CFRP 사각 구조부재의 압궤 특성에 관한 연구 (A Study on the Collapse Characteristics of Al/CFRP Square Structural Member for Light Weight)

  • 황우채;심재기;양인영
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.219-224
    • /
    • 2011
  • Aluminum or CFRP is representative one of the lightweight materials. Collapse behavior of Al/CFRP square structural member was evaluated in this study based on the respective collapse behavior of aluminum and CFRP member. Al/CFRP square structural members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material with mechanical properties, The Al/CFRP square structural members stacked at different angles(${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member) and interface numbers(2, 3, 4, 6 and 7). The axial impact collapse tests were carried out for each section members. Collapse mode and energy absorption characteristics of the each member were analyzed.

2차좌굴을 포함하는 선체판의 탄소성거동에 관한 연구 (A Study of the Buckling/plastic Collapse Behaviour of Ship Plates with Secondary Buckling)

  • 고재용;이돈출;유영훈;조영태;박성현
    • 한국항해항만학회지
    • /
    • 제26권1호
    • /
    • pp.50-54
    • /
    • 2002
  • 선박은 박판으로 이루어진 상자형구조물이기 때문에 선박이 황천항해를 하게 되면 선체의 상갑판과 선저판에는 호깅이나 새깅이 반복적으로 일어나므로 선테판에는 인장력과 압축력이 반복적으로 작용하게 된다 이 중에서도 압축력이 작용하는 경우가 선박의 종강도상에 치명적인 결과를 가져올 수 있다. 따라서, 본 본문에서는 선체판중에서 종횡비가 1.4인 판을 대상으로 하여 탄소성유한요소해석을 통하여 압축하중을 계속적으로 증가시켜 좌굴과 함께 탄소성대변형거동을 밝힘과 동시에 2차좌굴과 탄소성거동과의 메카니즘을 규명하여 압축하중을 받는 선테판의 탄소성대변형거동을 규명하였다.

소성 강도 해석에 의한 Web Frame의 시스템 신뢰성 해석 (The System Reliability Analysis of Web Frame by Plastic Strength Analysis)

  • 양영순;임상전
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.251-267
    • /
    • 1991
  • 평면 골조 구조물로 이상화된 Web frame의 최종강도를 합리적으로 추정하기 위해 기존의 탄성해석 방법 대신에 구조물의 소성붕괴를 최종상태로 가정하여 구조해석을 수행하는 소성 해석 방법으로 선형 계획법과 Compact procedure를 정식화 하였고, 그 결과를 탄소성 해석과 비교하여 Web frame의 안전성 평가에 있어서 소성강도 해석 방법의 유용성을 검토하였다. 또한 구조해석에 사용되는 변수들의 확률적 특성을 고려하여 구조물의 안전성 평가를 하는 신뢰성 해석을 위해 소성붕괴 해석에서 얻어지는 구조물이 소성 파괴모드를 신뢰성 모델로서 사용 하였으나, 선체와 같이 과잉 구속되어 있는 부정정 구조물이 갖는 다수의 파괴모드 문제를 처리 하기 위해 기본 파괴모드 해석 방법과 자동 파괴모드 해석 방법을 이용하였고, 얻어진 파괴 모드로 부터 Web frame의 파괴확률을 계산하여 구조물의 안전성 평가에 있어서 확정론적인(deterministic)방법과 확률론적인(probabilistic)방법을 비교 검토하였다.

  • PDF