• Title/Summary/Keyword: Plastic analysis

Search Result 4,823, Processing Time 0.037 seconds

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes (2차원 박판성형공정 해석을 위한 강소성 외연적 유한요소 수식화)

  • An, Dong-Gyu;Jeong, Dong-Won;Jeong, Wan-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.88-99
    • /
    • 1996
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modeling of material requiring large computataion time. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. Thus, the effective ranges of parameters have been proposed for numerical simultion by the rigid-plastic explicit finite element method. A direct trial-and-error method is introduced to treat contact and friction. In computation, sheet material is assumed to possess normal anisotropy and rigid-plastic workhardening characteristics. In order to show the validity and effectiveness of the proposed explicit scheme, computations are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic exlicit finite element method can be used as a robust and efficient computational method for analysis of sheet metal forming.

Attitude toward Plastic Surgery and Clothing Behavior according to Females' Appearance Concerns (여성의 외모관심도에 따른 성형태도와 의복행동)

  • Park, Eunhee;Cho, Hyonju
    • Journal of Fashion Business
    • /
    • v.18 no.2
    • /
    • pp.132-147
    • /
    • 2014
  • The purpose of this study is to classify the appearance concern into groups and analyze the differences of the attitude toward plastic surgery and clothing behavior by groups. Questionnaires are administered to 206 female adults in their 20's-50's living in Deagu and Kyungbook areas from $10^{th}$ July to $19^{th}$ July, 2013. Frequency, factor analysis, reliability analysis, correlation analysis, cluster analysis, ANOVA, Duncan-test and ${\chi}^2$-test were used for data analysis. The appearance concern is categorized as follows: appearance harmony focus and body focus. The attitude toward plastic surgery was found as risk tolerance, image improvement/surgery desire and keeping the secret of surgery. Clothing behaviors are found as individuality focus, other focus, convenience and luxury ostentation. The appearance concern shows a significant correlation with the sub-variable attitude toward plastic surgery and clothing behavior. One test in the groups is determined by demographic variables like occupancy and monthly income. Appearance concerns are classified into three groups as follows: appearance concern group, low appearance concern group and body concern group. The groups show a significant difference in the attitude toward plastic surgery and clothing behavior. This difference indicates that the 20's show a high body focus on their appearance concern, an attitude of image improvement/surgery desire toward plastic surgery and another individuality focus on clothing behavior while 50's care more about convenience in their clothing behavior.

Development of Hysteretic Analysis Model for RC beam with Relocated Plastic Hinge from Column Face (소성힌지가 기둥면에서 이동된 RC보의 이력거동 해석모델)

  • Seo, Soo-Yeon;Yoon, Seung-Joe;Lee, Li-Hyung;Kwon, Young-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.167-175
    • /
    • 2002
  • In this paper, an analytical model is proposed for analyzing the hysteretic behavior of RC beam with relocated plastic hinge region under load reversals. The plastic hinge is modeled not to be concentrated on a point but to be distributed on a finite size in beam. This is based on the assumption that the plastic hinge is formed over a certain region, in which the curvature varies. Tangential matrix is reformed using stiffness coefficients including variales such as the length and location of plastic hinge region. In order to construct the hysteretic rule of hinge, modified Takeda rule is also proposed on the base of regression analysis for the previous test results. Previous specimens are analyzed using the proposed model and the result is compared with test result. On the result of the comparison, it was shown that the hysteretic behavior of beams with different location of plastic hinge region could be prediced using the proposed analytical process.

Plastic load bearing capacity of multispan composite highway bridges with longitudinally stiffened webs

  • Unterweger, Harald;Lechner, Andreas;Greiner, Richard
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.1-19
    • /
    • 2011
  • The introduction of the Eurocodes makes plastic design criteria available also for composite bridges, leading to more economical solutions compared with previous elastic design rules. Particularly for refurbishment old bridges with higher actual traffic loads, up to date outside the scope of the Eurocodes, strengthening should therefore be avoidable or at least be necessary only to a minor extent. For bridges with smaller spans and compact cross sections, the plastic load bearing capacity is clearly justified. In this work, however, the focus is placed on long span continuous composite bridges with deep, longitudinally stiffened girders, susceptible to local buckling. In a first step, the elastic - plastic cross section capacity of the main girder in bending is studied as an isolated case, based on high preloads acting on the steel girder only, due to the common assembling procedure without scaffolding. In a second step, the effects on the whole structure are studied, because utilising the plastic section capacity at midspan leads to a redistribution of internal forces to the supports. Based on the comprehensive study of an old, actual strengthened composite bridge, some limitations for plastic design are identified. Moreover, fully plastic design will sometimes need additional global analysis. Practical recommendations are given for design purposes.

Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation (온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링)

  • Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.

Development of Asymmetric Plastic Fan Product (비대칭형 플라스틱 팬 제품 개발)

  • Yon, Kyu-Hyun;Kim, Hyung-Kook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • The analysis of injection molding process by CAE is widely used in development of plastic products. That comes from the fact that CAE analysis can reduce trial and error based on optimized design. On this study, by use of MOLDFLOW, the causes of product defects were found and solved by trade-off study. CAE analysis includes Flow-Cool-Warpage Analyses and finally a new mold-die design with better product quality was suggested. On injection molding of round-shaped plastic fan, new mold-die system with 4-tunnel gates located on the edge of a fan disc shows better quality rather than pin-point gate located on the center of a disc. That was effective in terms of flow mark removal and flatness improvement of the product.

  • PDF

Linear Structural Analysis and Simple Tensile Test of Plastic Injection Molding Tensile Specimen (플라스틱 사출인장시편의 단순인장시험 및 선형구조해석)

  • Lee, D.M.;Han, B.K.;Lee, Sung-Hee
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.230-233
    • /
    • 2006
  • In this study, the effects of residual stress induced by plastic injection molding process on the tensile behavior of plastic tensile test specimen were investigated. To manufacture plastic tensile test specimens, an injection mold based on the international standard system was designed and made. Cavity pressure and temperature sensors were installed inside of the presented mold to monitor pressure and temperature values during the cycle of injection molding. Injection molding simulation was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress. It was shown that the residual stress induced by injection molding has an effect on the experiment of tensile test and linear structural tensile simulation.

  • PDF

Meshfree Analysis of Elasto-Plastic Deformation Using Variational Multiscale Method (변분적 다중 스케일 방법을 이용한 탄소성 변형의 무요소해석)

  • Yeon Jeoung-Heum;Youn Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1196-1202
    • /
    • 2004
  • A meshfree multi-scale method has been presented for efficient analysis of elasto-plastic problems. From the variational principle, problem is decomposed into a fine scale and a coarse scale problem. In the analysis only the plastic region is discretized using fine scale. Each scale variable is approximated using meshfree method. Adaptivity can easily and nicely be implemented in meshree method. As a method of increasing resolution, partition of unity based extrinsic enrichment is used. Each scale problem is solved iteratively. Iteration procedure is indispensable for the elasto-plastic deformation analysis. Therefore this kind of solution procedure is adequate to that problem. The proposed method is applied to Prandtl's punch test and shear band problem. The results are compared with those of other methods and the validity of the proposed method is demonstrated.

Application of Plastic Analysis Method to Ship Grillage Design (소성해석법의 선체 GRILLAGE 설계에의 응용)

  • Kim, Ki-Sung;Shin, Sung-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.792-802
    • /
    • 2010
  • A plastic analysis method is commonly used in ship and offshore structural system to utilize the ultimate strength. In this paper, the basic principle of plastic analysis method is applied to ship grillages such as transverse oil-tight bulkheads. The main emphasis is placed on the optimum arrangement of grillage system to give minimum weight. Additional parametric study is carried out to find the effect of various arrangement of grillage system. The above methods are applied to oil-tight bulkhead design, and results are compared with the existing one.