• 제목/요약/키워드: Plastic Mode

검색결과 464건 처리시간 0.024초

연성 파괴 기준을 이용한 허브 홀 확장 과정에서의 파단 예측 (Prediction of fracture in hub-hole expansion process using ductile fracture criteria)

  • 고윤기;이종섭;허훈;김홍기;박성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.160-163
    • /
    • 2004
  • The hub hole in a wheel of vehicles usually formed with hole expansion process. Formability of material, especially the hole expansion ratio, is important to produce a fine hub hole. The hub hole expansion process is different from general forming process or bore expansion process in the viewpoint of forming a thick plate. In the hole expansion process of the plate with a hole, as the hole being expanded, the crack is occurred to outward direction at the boundary of a hole. Therefore, it is need to apply the fracture criterion in the hub hole expansion process. In this paper, the hub hole expansion process is simulated with commercial elasto-plastic finite element code, LS-DYNA3D considering some ductile fracture criteria. Fracture mode and hole expansion ratio is compared with respect to the fracture criteria. Analysis results demonstrate that only the effective plastic strain is not adequate to predict the fracture mode in the hub hole. And the analysis results also indicate that the ductile fracture criteria properly predict the fracture mode but hole expansion ratio is different with the result of each other because of their different characteristics.

  • PDF

콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성 (Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement)

  • 박찬기;원종필
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

경량 재료를 이용한 DCB 시험편의 열림 모드에서의 파손 특성에 관한 연구 (A Study on Fracture Characteristics in Opening Mode of a DCB Specimen Using a Lightweight Material)

  • 김재원;조재웅
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.42-47
    • /
    • 2021
  • Recently, many structures using lightweight materials have been developed. This study was conducted by using Al6061-T6 and carbon fiber reinforced plastic (CFRP), two common lightweight materials. In addition, the failure characteristics of an interface bonded between a single material and a heterogeneous bonding material were analyzed. The specimens bonded with CFRP and Al6061-T6 were utilized by the combination of the heterogeneous bonding material. The specimens had a double cantilevered shape and the bonding between the materials was achieved by applying a structural adhesive. The experiments were conducted in opening mode: the lower part of the samples was fixed, while their upper part was subjected to a forced displacement of 3 mm/min by using a tensile tester. Under the tested amount of strength, energy release rate, and considering the specimens' fracture characteristics in opening mode, the specimen "CFRP-Al" presented the maximum stress, followed by "Al" and "CFRP". We can hence conclude that the inhomogeneous material "CFRP-Al" is useful for the construction of lightweight structures bonded with structural adhesive.

A displacement controlled method for evaluating ground settlement induced by excavation in clay

  • Qian, Jiangu;Tong, Yuanmeng;Mu, Linlong;Lu, Qi;Zhao, Hequan
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.275-285
    • /
    • 2020
  • Excavation usually induces considerable ground settlement in soft ground, which may result in damage of adjacent buildings. Generally, the settlement is predicted through elastic-plastic finite element method and empirical method with defects. In this paper, an analytical solution for predicting ground settlement induced by excavation is developed based on the definition of three basic modes of wall displacement: T mode, R mode and P model. A separation variable method is employed to solve the problem based on elastic theory. The solution is validated by comparing the results from the analytical method with the results from finite element method(FEM) and existing measured data. Good agreement is obtained. The results show that T mode and R mode will result in a downward-sloping ground settlement profile. The P mode will result in a concave-type ground settlement profile.

해밀토니안의 시간 불연속 변분적분기를 이용한 2차원 탄소성 응력파 해석 (Analysis of 2-Dimensional Elasto-Plastic Stress by a Time-Discontinuous Variational Integrator of Hamiltonian)

  • 조상순;허훈;박광춘
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.263-266
    • /
    • 2008
  • This paper is concerned with the analysis of elasto-plastic stress waves in a mode I semi-infinite cracked solid subjected to Heaviside pulse load. This study adopts a time-discontinuous variational integrator based on Hamiltonian in order to reduce the numerical dispersive and dissipative errors. This also utilizes an integration scheme of the constitutive model with 2nd-order accuracy which is formulated on the strain space for a rate and temperature dependent material model. Finite element analyses of elasto-plastic stress waves are carried out in order to compare the accuracy between a conventional Galerkin method and the time- discontinuous variational integrator.

  • PDF

계면균열을 가진 연성접합재의 소성영역 크기 - 이종 모재의 경우 - (Plastic Zone Size in a Ductile Layer with an Interface Crack - Case Study for Dissimilar Substrates -)

  • 김동학;강기주
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.898-904
    • /
    • 2003
  • Using the modified Irwin model and the modified Dugdale model, the plastic zone size near the interface crack tip in a ductile layer bonding two dissimilar elastic substrates is predicted. Validity of the models is examined by finite element method. The effects of several factors such as the mode mixity, T-stress and material properties are explored. The plastic zone size significantly decreases with the Poisson's ratio of the ductile layer.

강도적 불균질재의 노치 표면에서의 연성크랙 발생 거동 (Behavior of ductile crack initiation with strength mismatch from notch root)

  • 안규백;대연윤;방한서;풍전정남
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.246-248
    • /
    • 2004
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

미소 원주의 사출 성형 실험 (Injection Molding Experiments for Small Diameter Column)

  • 제태진;이응숙;김재구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 1995
  • Recently, the micro mold maching techining technology is developed by means of the mechanical and high energy beam process. It is possible to make the micro structure mold with high aspect ratio by the LIGA technology. This mode is used for mass production of plastic parts by the micro injection molding method. In this study, we intend to research on the basic technology of micro injection molding. As the result, we developed the injection molding technology for small column plastic parts which diameter is 500 .mu. m and 200 .mu. m respectively with wbout aspect ratio 20.

  • PDF

입사광의 크기 조절을 통한 경사굴절률 플라스틱 광섬유의 수치구경 측정기법 (Measurement of Numerical Aperture of Graded-index Plastic Optical Fiber by Using a Variable Aperture)

  • 김대규;김보람;이병학;박승한
    • 한국광학회지
    • /
    • 제22권1호
    • /
    • pp.5-9
    • /
    • 2011
  • 다중모드 경사굴절률 플라스틱 광섬유는 경사굴절률을 생성하기 위하여 첨가하는 미세입자, 불균일한 경사굴절률의 분포, 다른 모드 사이의 광학적인 간섭 등으로 인하여 스펙클 잡음이 크기 때문에, 광섬유 출력 단에서 방사되는 기하학적 광 세기 분포를 분석하여 측정하는 기존의 일반적인 수치구경 측정 방법으로는 수치구경 측정이 매우 어려운 문제점이 있다. 따라서 본 논문에서는 이와 같은 다중모드 경사굴절률 플라스틱 광섬유의 수치구경 측정을 위하여 입사 단에서 입사 광의 크기를 조절하여 수치구경을 구하는 새로운 방법을 제안하고, 이를 이용하여 플라스틱 광섬유의 수치구경을 측정하였다. 측정 결과, 기존의 방법으로 측정한 플라스틱 광섬유의 수치구경 값과 비교적 잘 일치함을 확인할 수 있었으며, 제안한 기법이 출력 단에서 방사되는 광세기 분포의 모호함을 배제할 수 있고 입력광의 입사 조건 및 광섬유 결합 효율을 최적화할 수 있는 장점이 있음을 알 수 있었다.