• Title/Summary/Keyword: Plastic Forming

Search Result 595, Processing Time 0.034 seconds

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Thermal Deformation of Curved Plates by Line Heating (선상가열법에 의한 곡판의 열변형)

  • LEE JOO-SUNG;LIM DONG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.33-38
    • /
    • 2005
  • It has been well documented that plate forming is one of the most important processes in shipbuilding. In the most shipyards, the line heating method is primarily used for plate forming. Since the heating process is carried out for the curved plate and not for the flat plate, a curvature effect on the final deformation must be considered in deriving the simplified prediction models for deformation. This paper investigates the effect of curvature along the heating line on the deformation of the plate. First of all, results of numerical analysis are compared with these of a line-heating test, to justify the elasto-plastic analysis procedure for the present study, which shows good agreement. Then, the present numerical procedure is applied to flat and curved plate models, to investigate the curvature effect on the heat transfer characteristics and deformation by line heating.

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.

Plane-Strain Analysis of Auto-Body Panel Using the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 자동차 판넬 성형공정의 평면 변형해석)

  • 양동열;정완진;송인섭;전기찬;유동진;이정우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.169-178
    • /
    • 1991
  • A plane-strain finite element analysis of sheet metal forming is carried out by using the rigid-plastic FEM based on the membrane theory. The sheet material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A formulation of initial guess generation for the displacement field is derived by using the nonlinear elastic FEM. A method of contact treatment is proposed in which the skew boundary condition for arbitrarily shaped tools is successively used during iteration. In order to verify the validity of the developed method, plane-strain drawing with tools in analytic expression and with arbitrarily shaped tools is analyzed and compared with the published results. The comparison shows that the present method can be effectively used in the analysis of plane-strain sheet metal forming and thus provides the basis of approximate sectional analysis of panel-like sheet forming.

Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method (반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화)

  • Lee, H.W.;Lee, G.A;Choi, S.;Yoon, D.J.;Lim, S.J.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

Numerical Simulation of Drawbead Formation in a Binder Wrap Process by an elasto-Plastic Finite Element Method (탄소성 유한요소법에 의한 드로우비드 성형 해석)

  • Choi, Tae-Hoon;Huh, Hoon;Lee, Jang-Hee;Park, Chun-Dal
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.196-202
    • /
    • 1995
  • Drawbead formulation is the first process together with a binder wrap process in a sheet metal forming process. The purpose of a drawbead is to control the flow of the metal into the die in panel press forming. To simulate the drawbead formation process, an elasto-plastic finite element formulation is derived from the equilibrium equation an drelated boundary conditions considering the proper contact conditons. The developed finite element program is applied to drawbead formation in the plane strain condition. The simulation of drawbead formation produces the distribution fo stress and strain along the bead and the resultant elongation of the sheet in the cavity region with respect to various cavity dimensions of the sheet as well as the punch force of a drawbead and the amount of draw-in with respect to the stroke fo a drawbead. The numerical resutls provides the fundamental information as a boundary condition to analyze the complex binder wrap phenomena and panel press forming in simple way.

  • PDF

Methodology of Three-Dimensional Thermoforming Analysis to Simulate Forming Process of Medium and Large-Sized Plastic Parts (중대형 플라스틱 제품 성형공정 모사를 위한 3 차원 진공 열성형 해석 기법)

  • Lee, Ho Jin;Ahn, Dong Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.953-960
    • /
    • 2015
  • The thermoforming process has been widely used to manufacture medium- and large-sized plastic parts because of the relatively low cost and high productivity, as compared with other plastic forming processes. One of current salient issues of thermoforming industries is the reduction of trial and error during the production of the thermoformed product. Hence, there is a significant increasing interest in the thermoforming analysis by the thermoforming industries. The goal of this paper is to investigate a methodology of the three-dimensional thermoforming analysis for medium- and large-sized plastic parts. There is a discussion about methodologies of thermoforming analysis, as well as material modeling, and three-dimensional finite element analysis. Furthermore, there is an examination, through case studies, about the applicability of the proposed methodology concerning the thermoforming analysis.

A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body (강철재 약협의 공정해석 및 성형공정 개선에 관한 연구)

  • Jang, Dong Hwan;Yu, Tae Gon;Hwang, Byeong Bok
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.246-246
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body (강철재 약협의 공정해석 및 성형공정 개선에 관한 연구)

  • 장동환;유태곤;황병복
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.245-252
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

  • PDF

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.