• 제목/요약/키워드: Plasma-UV Process

검색결과 66건 처리시간 0.029초

Determination of nadolol enantiomers in human plasma using a coupled achiral-chiral high-performance liquid chromatography method

  • Lee, Seung-Beom;Pham, Thuy-Vy;Mai, Xuan-Lan;Le, Thi-Anh-Tuyet;Nguyen, Thi-Ngoc-Van;Kang, Jong-Seong;Mar, Woongchon;Kim, Kyeong Ho
    • 분석과학
    • /
    • 제33권2호
    • /
    • pp.59-67
    • /
    • 2020
  • Nadolol is a β-blocker drug, which effectively manages hypertension and angina pectoris. Its chemical structure allows the formation of four possible stereoisomers. A coupled column high-performance liquid chromatographic (HPLC) system with UV and fluorescence detection was investigated for simultaneously determining four nadolol enantiomers in human plasma. The plasma samples were prepared using a convenient liquid-liquid extraction process and passed through HPLC. Nadolol was initially separated from the endogenous compounds or other impurities in human plasma on a Phenomenex silica column, and its enantiomers were resolved and determined on a Chirapak AD-H column. The developed HPLC method achieved an effective chiral separation and significantly eliminated endogenous compound interference. This optimal HPLC method was validated following FDA guidelines. The results showed good selectivity, linearity, accuracy (90.50 % - 105.27 %), and precision (RSDs < 9.52 %) for each enantiomer. This method was also successfully applied to determine nadolol enantiomers in the plasma samples of a healthy male volunteer (after orally administering 80 mg racemic nadolol), proving its suitability for nadolol stereoselective pharmacokinetic studies.

AC-PDP용 인산염 결정화 유리의 유전적 특성에 관한 연구 (A study on dielectric characteristic of phosphate glass-ceramic for AC-PDP)

  • 김준형;연석주
    • 한국결정성장학회지
    • /
    • 제17권3호
    • /
    • pp.102-107
    • /
    • 2007
  • 인산염계 유리를 사용하여 PDP 소자의 하판유전체 후막을 제작하였다. 유전체 후막의 제조는 soda-lime glass위에 silk screen printing 법을 사용하였다. 기판과 유전체후막의 열팽창계수를 맞추기 위하여 $TiO_2$$Al_2O_3$를 충진제로 사용하였다. 유전체의 결정화 거동은 DTA, XRD를 사용하였으며 광학적 열적 전기적인 특성을 알아보기 위하여 UV-spectrometer, Dilatometer, Impedance Analyser를 사용하였다. 실험결과 주 결정상은 메타인산아연과 피로인산아연으로 나타났다. $TiO_2$의 첨가로 인하여 반사율은 높아졌으나 상대적으로 유전상수는 높아졌다. 또한 $Al_2O_3$를 첨가한 경우 반사율은 크게 변화가 없었으나 유전상수 값은 낮아졌다. 또한 열팽창 계수는 약 $62{\times}10^{-7}/^{\circ}C$ 정도였다.

Width Control in the Photo patterning of PDP Barrier Ribs

  • Kim, Dong-Ju;Kim, Soon-Hak;Hur, Young-June;Kim, Duck-Gon;Lee, Sam-Jong;Jung, Sang-Kwon;Kim, Myeug-Chan;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.910-912
    • /
    • 2006
  • Barrier ribs in plasma display panels (PDPs) function to maintain the discharge space between the glass plates as well as to prevent optical cross-talking. The barrier ribs currently employed are typically $300{\mu}m$ pitch, $110{\sim}120{\mu}m$ in height, with upper and lower widths of $50{\mu}m$ and $80{\mu}m$, respectively. It has been reported that barrier ribs can be fabricated by screen-printing, sand blasting, etching and photolithographic processes. In this study, photosensitive barrier rib pastes were formulated and systematically evaluated in terms of photolithographic process variables such as printing, drying, UV exposure, development and sintering. It was found that the use of UV absorbent, polymerization inhibitor and surfactant were very effective in controlling the width uniformity of barrier ribs in the photolithographic method of barrier rib patterning.

  • PDF

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • 동굴
    • /
    • 제76호
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

유도결합 플라즈마(ICP) Sputtering에 의한 평판 디스플레이(FPD)용 ITO 박막의 저온 증착 (Low Temperature Deposition of ITO Thin Films for Flat Panel Displays by ICP Assisted DC Magnetron Sputtering)

  • 구범모;정승재;한영훈;이정중;주정훈
    • 한국표면공학회지
    • /
    • 제37권3호
    • /
    • pp.146-151
    • /
    • 2004
  • Indium tin oxide (ITO) is widely used to make a transparent conducting film for various display devices and opto-electric devices. In this study, ITO films on glass substrate were fabricated by inductively coupled plasma (ICP) assisted dc magnetron sputtering. A two-turn rf coil was inserted in the process chamber between the substrate and magnetron for the generation of ICP. The substrates were not heated intentionally. Subsequent post-annealing treatment for as-deposited ITO films was not performed. Low-temperature deposition technique is required for ITO films to be used with heat sensitive plastic substrates, such as the polycarbonate and acrylic substrates used in LCD devices. The surface roughness of the ITO films is also an important feature in the application of OLEDs along with the use of a low temperature deposition technique. In order to obtain optimum ITO thin film properties at low temperature, the depositions were carried out at different condition in changing of Ar and $O_2$ gas mixtures, ICP power. The electrical, optical and structural properties of the deposited films were characterized by four-point probe, UV/VIS spectrophotometer, atomic force microscopy(AFM) and x-ray diffraction (XRD). The electrical resistivity of the films was -l0$^{-4}$ $\Omega$cm and the optical transmittance in the visible range was >85%. The surface roughness ( $R_{rms}$) was -20$\AA$.>.

PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가 (Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps)

  • 차남구;박창화;조민수;김규채;박진구;정준호;이응숙
    • 한국재료학회지
    • /
    • 제16권4호
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

유체 플라즈마 공정으로 합성한 백금 나노입자의 전기화학적 특성 평가 (Characterization and Electrocatalytic Activities of Pt Nanoparticles Synthesized by Solution Plasma Process)

  • 이유진;진상훈;김성철;김성민;이상율
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.161-161
    • /
    • 2013
  • 본 연구에서는 백금 나노입자의 크기, 형상, 분포도에 따른 전기 화학적 효율을 평가하기 위해 계면활성제 농도를 달리하여 백금 나노입자를 합성하였다. 계면활성제로는 CTAB(cetyltrimethylammonium bromide)이 사용되었으며, 0.5 mM의 $H_2PtCl_6$의 백금 염을 환원시키기 위하여 유체 플라즈마 공정을 이용하였다. 공정 시간은 UV-vis 스펙트럼 결과를 토대로, 262 nm의 파장대에서 관찰된 LMCT(ligand-to-metal charge transfer) peak이 사라지는 시간을 기준으로 하여 공정을 진행하였다. 합성된 나노입자는 순환 전류-전압곡선(CV), TEM이미지와 XRD 분석을 이용하여 전기화학적 특성, 입자의 평균 크기 및 형상 변화를 비교 분석 하였다. 그 결과 CTAB을 넣지 않은 백금나노입자의 경우, CTAB을 넣고 제조한 백금 나노입자와는 달리 구의 형태로 뭉쳐있음을 관찰하였고, 이러한 백금 나노입자의 구조는 보다 높은 전기화학적 활성 특성을 가짐을 보였다.

  • PDF

Glass strengthening and coloring using PIIID technology

  • Han, Seung-Hee;An, Se-Hoon;Lee, Geun-Hyuk;Jang, Seong-Woo;Whang, Se-Hoon;Yoon, Jung-Hyeon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.178-178
    • /
    • 2016
  • Every display is equipped with a cover glass to protect the underneath displaying devices from mechanical and environmental impact during its use. The strengthened glass such as Gorilla glass.$^{TM}$ has been exclusively adopted as a cover glass in many displays. Conventionally, the strengthened glass has been manufactured via ion-exchange process in wet salt bath at high temperature of around $500^{\circ}C$ for hours of treatment time. During ion-exchange process, Na ions with smaller diameter are substituted with larger-diameter K ions, resulting in high compressive stress in near-surface region and making the treated glass very resistant to scratch or impact during its use. In this study, PIIID (plasma immersion ion implantation and deposition) technique was used to implant metal ions into the glass surface for strengthening. In addition, due to the plasmonic effect of the implanted metal ions, the metal-ion implanted glass samples got colored. To implant metal ions, plasma immersion ion implantation technique combined with HiPIMS method was adopted. The HiPIMS pulse voltage of up to 1.4 kV was applied to the 3" magnetron sputtering targets (Cu, Ag, Au, Al). At the same time, the sample stage with glass samples was synchronously pulse-biased via -50 kV high voltage pulse modulator. The frequency and pulse width of 100 Hz and 15 usec, respectively, were used during metal ion implantation. In addition, nitrogen ions were implanted to study the strengthening effect of gas ion implantation. The mechanical and optical properties of implanted glass samples were investigated using micro-hardness tester and UV-Vis spectrometer. The implanted ion distribution and the chemical states along depth was studied with XPS (X-ray photo-electron spectroscopy). A cross-sectional TEM study was also conducted to investigate the nature of implanted metal ions. The ion-implanted glass samples showed increased hardness of ~1.5 times at short implantation times. However, with increasing the implantation time, the surface hardness was decreased due to the accumulation of implantation damage.

  • PDF

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

표면 전처리 공정에 따른 투명전극 계면 특성 변화와 유기 태양전지 성능 및 안정성 향상 (Performance and Stability Enhancement of Organic Solar Cells by Surface Treatment Processes of Transparent Electrodes)

  • 이관용;김도현;박선주;김영주
    • 정보저장시스템학회논문집
    • /
    • 제9권2호
    • /
    • pp.42-47
    • /
    • 2013
  • In this study, we have experimentally analyzed how the surface properties of transparent electrode layer influence the photovoltaic performance of bulk heterojunction organic solar cell by the contact angle measurement and X-ray photoelectron spectroscopy(XPS) observation. As a result, the power conversion efficiency of test devices improved from 0.64% to 1.83% and 2.15% by UV-ozone exposure and $O_2$ plasma treatment, respectively. Thus, we conclude that the surface activation process is very important for better performance and stability in addition to the cleaning process of carbonate residue on the surface.