• 제목/요약/키워드: Plasma surface treatment

검색결과 992건 처리시간 0.024초

저온프로세스를 이용한 고분자필름의 플라즈마 표면처리 (Plasma Surface Treatment of the Polymeric Film with Low Temperature Process)

  • 조욱;양성채
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.486-491
    • /
    • 2008
  • The plasma processing is applied to many industrial fields as thin film deposition or surface treatment technique. In this study, we investigated large-area uniformed surface treatment of PET film at low temperature by using Scanning Plasma Method(SPM). Then, we measured difference and distribution of temperature on film's surface by setting up a thermometer. We studied the condition of plasma for surface treatment by examining intensity of irradiation of uniformed plasma. And we compared contact angles of treated PET film by using Ar and $O_2$ plasma based low temperature. In our result, surface temperature of 3-point of treating is low temperature about $22^{\circ}C$, in other hands, there is scarcely any variation of temperature on film's surface. And by using Ar plasma treatment, contact angle is lower than untreatment or $O_2$ plasma treatment. In case of PET film having thermal weak point, low temperature processing using SPM is undamaged method in film's surface and uniformly treated film's surface. As a result, Ar plasma surface treatment using SPM is suitable surface treatment method of PET film.

열플라즈마를 이용한 재료의 표면개질 (Surface modification of materials by thermal plasma)

  • 강성표;이한준;김태희
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.308-318
    • /
    • 2022
  • The surface modification and treatment using thermal plasma were reviewed in academic fields. In general, thermal plasma is generated by direct current (DC) and radiofrequency (RF) power sources. Thermal spray coating, a typical commercial process using thermal plasma, is performed by DC thermal plasma, whereas other promising surface modifications have been reported and developed using RF thermal plasma. Beyond the thermal spray coating, physical and chemical surface modifications were attempted widely. Superhydrophobic surface treatment has a very high industrial demand particularly. Besides, RF thermal plasma system for large-area film surface treatment is being developed. Thermal plasma is especially suitable for the surface modification of low-dimensional nanomaterial (e.g., nanotubes) by utilizing high temperature and rapid quenching. It is able to synthesize and modify nanomaterials simultaneously in a one-pot process.

아르곤 플라즈마처리에 의한 다결정 $Si_{1-x}Ge_x$박막의 표면거칠기 개선 (The Improvement of Surface Roughness of Poly-$Si_{1-x}Ge_x$Thin Film Using Ar Plasma Treatment)

  • 이승호;소명기
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1121-1128
    • /
    • 1997
  • In this study, the Ar plasma treatment was used to improve the surface roughness of Poly-Si1-xGex thin film deposited by RTCVD. The surface roughness and the resistivity of Si1-xGex thin film were investigated with variation of Ar plasma treatment parameters (electrode distance, working pressure, time, substrate temperature and R.F power). When the Ar plasma treatment was used, the cluster size decreased by the surface etching effect due to the increasing surface collision energy of particles (ion, neutral atom) in plasma under the conditions of decreasing electrode distance and increasing pressure, time, temperature, and R. F power. Although the surface roughness value decreased by the reduction of the cluster size due to surface etching effect, however, the resistivity increased. This may be due to the surface damage caused by the increasing surface collision energy. It was concluded that the surface roughness could be improved by the Ar plasma treatment, while the resistivity was increased by the surface damage on the substrate.

  • PDF

저온플라즈마처리에 의한 폴리아크릴로니트릴의 표면개질 (Surface Modification of Polyacrylonitrile by Low-temperature Plasma)

  • 서은덕
    • 한국염색가공학회지
    • /
    • 제19권1호
    • /
    • pp.45-52
    • /
    • 2007
  • Polyacrylonitrile(PAN) fiber was treated with low-temperature plasmas of argon and oxygen for surface modification, and its surface chemical structure and morphology were examined by a field emission scanning electron microscope(FESEM) and a Fourier-transform infrared microspectroscopy(IMS). The argon-plasma treatment caused the only mechanical effect by sputtering of ion bombardment, whereas the oxygen plasma brought about a chemical effect on the PAN fiber surface. The experimental evidences strongly suggested that cyclization of nitrile group and crosslinking were likely to occur in the oxygen-plasma treatment. On the other hand, with the argon-plasma treatment, numerous my pits resulted in ranging from several tens to hundreds nanometers in radius. The plasma sensitivity of functional groups such as C-H, $C{\equiv}N$, and O-C=O groups in the PAN fiber was dependent on their chemical nature of bonding in the oxygen-plasma, in which the ester group was the most sensitive to the plasma. Vacuum-ultraviolet(VUV) radiation emitted during plasma treatment played no substantial role to alter the surface morphology.

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

주사 플라즈마 법(SPM)을 이용한 소수성 표면처리 (Control of Contact Angle by Surface Treatment using Sanning Plasma Method)

  • 김영기;최병정;양성채
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.10-13
    • /
    • 2010
  • The plasma processing technologies of thin film deposition and surface treatment technique have been applied to many industrial fields. This study is purposed Large-area uniformity and surface treatment on the stainless substrate. We treat surface of stainless by $CF_4$ plasma. $CF_4$ plasma is generated by using SPM(Scanning plasma method)which is kind a of CVD. Generally, SPM has been used for uniform surface treatment using a crossed electromagnetic field. The optimum discharge condition has been studied for the gas pressure, the magnetic flux density and the distance between substrate and electrodes. In result, contact angle is increased by surface treatment using $CF_4$ Plasma. Therefore we expect that SPM to control contact angle is applied to many industries.

A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

  • Park, Soo-Jin;Chang, Yong-Hwan;Moon, Cheol-Whan;Suh, Dong-Hack;Im, Seung-Soon;Kim, Yeong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.335-338
    • /
    • 2010
  • In this study, the atmospheric plasma treatment with $He/O_2$ was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix.

불소수지의 무전해 동도금을 위한 단계적 플라즈마 전처리법에 관한 연구 (Study on Two Step Plasma Treatment for Electroless Cu Plating of Fluoropolymer)

  • 신승한;한성호;김영석
    • 한국표면공학회지
    • /
    • 제38권3호
    • /
    • pp.118-125
    • /
    • 2005
  • Low temperature plasma treatment with different gases and rf powers were performed to improve the adhesion strength between polytetrafluoroethylene(PTFE) and electroless deposited copper. According to the research, $H_2$ plasma having hydrogen radical was more effective in surface polarity modification than $O_2$ plasma due to the defluorination reaction. However, surface roughness of PTFE was more increased with $O_2$ than $H_2$ plasma. PTFE treated with $120W-O_2$ plasma and $250w-H_2$ plasma, consecutively showed rougher surface than single step $250w-H_2$ plasma treated one and more hydrophilic than single step $120W-O_2$ plasma treated one. And it showed 5B tape test grade, which is better adhesion property than 1B or 3B obtained by single step plasma treatment. In addition, adhesion strength between PTFE and Cu deposit is also deeply affected by residual water on its interface.

플라즈마 표면처리가 Poly(ethylene terephthalate) 필름의 전기적 및 기계적 성질에 미치는 영향 (Effect of Plasma Surface Treatment on Electrical and Mechanical Properties of Poly(ethylene terephthalate ) Film)

  • 임경범;이덕출
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.61-67
    • /
    • 2001
  • In this study the electrical and mechanical characteristics of PET films ore analyzed after plasma surface treatment. After plasma treatment, the surface potential decay, surface potential and dielectric property were evaluated to analyze the electrical insulating property, and the tensile strength was measured as the mechanical characteristic. When plasma treatment was conducted for less than 10 minutes, it was found that the electrical insulating property was improved through evaporation of low molecular weight materials md cleaning of surface. However, for more than 10 minutes, the insulating property of plasma treated PET films was decreased due to excessive discharge energy. The tensile strength was hardly changed by Plasma treatment.

  • PDF

포스트 플라즈마를 이용한 질화의 질화층 형성에 미치는 전처리의 영향에 대한 연구 (A Study on the Effect of Pre-treatment on the Formation of Nitriding Layer by Post Plasma)

  • 문경일;변상모;조용기;김상권;김성완
    • 열처리공학회지
    • /
    • 제18권1호
    • /
    • pp.24-28
    • /
    • 2005
  • New post plasma nitriding can achieve a high uniformity that have been difficult in DC nitriding and have a high productivity comparable to gas nitriding. However, it has not a enough high nitriding potential for a rapid nitriding, because surface activation or ion etching in the general plasma nitriding cannot be expected. Thus, in this study, the effects of pre-treatments with oxidation and reduction gas have been investigated to improve the nitriding kinetics of post plasma nitriding. An effective pre-treatment consisting of oxidation and reduction resulted in the increase of surface energy of STD 11. This induced the surface hardness and the effective nitriding depth of STD 11. It is thought that the increase of the surface energy and the surface area with pre-treatment promote the nucleation of nitriding layer.