Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.6.308

Surface modification of materials by thermal plasma  

Kang, Seong-Pyo (Department of Chemical Engineering, Wonkwang University)
Lee, Han Jun (Department of Chemical Engineering, Wonkwang University)
Kim, Tae-Hee (Department of Chemical Engineering, Wonkwang University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.6, 2022 , pp. 308-318 More about this Journal
Abstract
The surface modification and treatment using thermal plasma were reviewed in academic fields. In general, thermal plasma is generated by direct current (DC) and radiofrequency (RF) power sources. Thermal spray coating, a typical commercial process using thermal plasma, is performed by DC thermal plasma, whereas other promising surface modifications have been reported and developed using RF thermal plasma. Beyond the thermal spray coating, physical and chemical surface modifications were attempted widely. Superhydrophobic surface treatment has a very high industrial demand particularly. Besides, RF thermal plasma system for large-area film surface treatment is being developed. Thermal plasma is especially suitable for the surface modification of low-dimensional nanomaterial (e.g., nanotubes) by utilizing high temperature and rapid quenching. It is able to synthesize and modify nanomaterials simultaneously in a one-pot process.
Keywords
Thermal plasma; Surface modification; Surface treatment; Coating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. I. Boulos, New frontiers in thermal plasma processing, Pure & Appl. Chem., 68 (1996) 1007-1010.   DOI
2 K. S. Kim, T. H. Kim, Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials, J. Appl. Phys., 125 (2019) 070901.   DOI
3 T. Ishigaki, H. Haneda, N. Okada, S. Ito, Surface modification of titanium oxide in pulse-modulated induction thermal plasma, Thin Solid Films, 390 (2001) 20-25.   DOI
4 C. M. Huang, L. C. Chen, K. W. Cheng, G. T. Pan, Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation, J. Mol. Catal. A Chem., 261 (2007) 218-224.   DOI
5 H. Tanaka, J.Y. Xu, M. Kurihara, S. Maruyama, N. Ohashi, Y. Moriyoshi, T. Ishigaki, Anomalous improvement of the electrochemical properties of mesocarbon microbeads by Ar-H2-SF6 thermal plasma treatment, Carbon, 42 (2004) 3229-3235.   DOI
6 A. Shahverdi, K. S. Kim, Y. Alinejad, G. Soucy, In situ purity enhancement/surface modification of single-walled carbon nanotubes synthesized by induction thermal plasma, J. Nanopart. Res., 14 (2012) 14:660.
7 Y. Tanaka, Time-dependent two-temperature chemically nonequilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure, J. Phys. D: Appl. Phys., 39 (2006) 307-319.   DOI
8 Y. Maruyama, Y. Tanaka, H. Irie, T. Tsuchiya, M. K. S. Tial, Y. Uesugi, T. Ishijima, T. Yukimoto, H. Kawaura, Rapid surface oxidation of the Si substrate using longitudinally-long Ar/O2 loop type of inductively coupled thermal plasmas, IEEE Trans. Plasma Sci., 44 (2016) 3164-3171.   DOI
9 K. VanEvery, M. J. M. Krane, R. W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, J. Almer, Column formation in suspension plasma-sprayed coatings and resultant thermal properties, J. Therm. Spray Tech., 20 (2011) 817-828.   DOI
10 M. K. S. Tial, H. Irie, Y. Maruyama, Y. Tanaka, Y. Uesugi, T. Ishijima, Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing, Jpn. J. Appl. Phys., 55 (2016) 07LB03.   DOI
11 R. S. Lima, B. R. Marple, Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Tech., 16 (2007) 40-63.   DOI
12 R. K. Sahoo, A. Das, S. K. Singh, B. K. Mishra, Synthesis of surface modified SiC superhydrophobic coating on stainless steel surface by thermal plasma evaporation method, Surf. Coat. Technol., 307 (2016) 476-483.   DOI
13 P. K. Chu, J. Y. Chen, L. P. Wang, N. Huang, Plasma-surface modification of biomaterials, Mater. Sci. Eng. R Rep., 36 (2002) 143-206.   DOI
14 S. W. K. Kweh, K. A. Khor, P. Cheang, Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock : microstructure and mechanical properties, Biomaterials, 21 (2000) 1223-1234.   DOI
15 T. Tsuchiya, Y. Tanaka, Y. Maruyama, A. Fujita, M. K. S. Tial, Y. Uesugi, T. Ishijima, T. Yukimoto, H. Kawaura, Loop type of inductively coupled thermal plasmas system for rapid two-dimensional oxidation of Si substrate surface, Plasma Chem. Plasma Process, 38 (2018) 599-620.   DOI
16 Y. Tanaka, T. Fujino, T. Iwao, Review of thermal plasma simulation technique, IEEJ Trans., 14 (2019) 1582-1594.
17 T. Ishigaki, Y. Moriyoshi, Thermal plasma treatment of titanium carbide powders: Part II. In-flight formation of carbon-site vacancies and subsequent nitridation in titanium carbide powders during induction plasma treatment, J. Mater. Res., 11 (2011) 2811-2824.   DOI
18 H. Tanaka, T. Osawa, Y. Moriyoshi, M. Kurihara, S. Maruyama, T. Ishigaki, Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma, Thin Solid Films, 457 (2004) 209-216.   DOI
19 Y. S. Na, S. Choi, D. W. Park, Carbon nanotube surface modification with the attachment of Si nanoparticles in a thermal plasma jet, Phys. Status Solidi A, 211 (2014) 2749-2755.   DOI
20 K. Kuraishi, M. Akao, Y. Tanaka, Y. Uesugi, T. Ishijima, Temperature behavior in a tandem type of modulated induction thermal plasma for materials processings, J. Phys.: Conf. Ser., 441 (2013) 012016.   DOI
21 H. Kurzweg, R. B. Heimann, T. Troczynski, M. L. Wayman, Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia, Biomaterials, 19 (1998) 1507-1511.   DOI
22 P. Xu, L. Pershin, J. Mostaghimi, T. W. Coyle, Efficient one-step fabrication of ceramic superhydrophobic coatings by solution precursor plasma spray, Mater. Lett., 211 (2018) 24-27.   DOI