• 제목/요약/키워드: Plasma surface

검색결과 3,414건 처리시간 0.036초

초극세형 폴리프로필렌부직포의 플라즈마를 이용한 표면개질 (Surface Modification of Polypropylene Meltblown(PPMB) Nonwovens by Plasma Treatment)

  • 이윤응;주창환
    • 한국염색가공학회지
    • /
    • 제18권1호
    • /
    • pp.20-27
    • /
    • 2006
  • On the purpose of surface modifications of polypropylene meltblown(PPMB) nonwovens, PPMB nonwovens were treated in the plasma system by oxygen atmosphere with different treatment time and discharge power. Dimensional change and physical properties of the treated nonwovens were evaluated. Contact angles onto PPMB nonwovens about water and methyleneiodide were measured and surface energies were calculated by Owen's method. As the results, microcraters were observed on the surface of treated nonwovens. Tenacity and breaking strain of PPMB nonwovens decreased with increasing treatment time and discharge power. Surface energy of PPMB nonwovens increased by plasma treatment. Meanwhile, the friction static voltage and dyeability of PPMB nonwovens have enhanced to some extent by oxygen plasma treatment due to the improvement of surface hydrophilicity.

Decontamination of Metal Surface by Reactive Cold Plasma

  • YUN Sang-pil;JEON Sang-hwan;KIM Yang-saa
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.300-315
    • /
    • 2005
  • Recently plasma surface-cleaning or surface-etching techniques have been focused in the respect of decontamination of spent or used nuclear parts and equipment. In this study decontamination rate of metallic cobalt surface was experimentally investigated via its surface etching rate with a $CF_4-O_2$ mixed gas plasma and metallic surface wastes of cobalt oxides were simulated and decontaminated with $NF_3$ - Ar mixed gas plasma. Experimental results revealed that a mixed etchant gas with about $80{\%}\;CF_4-20{\%}\;O_2$ gives the highest reaction rate of cobalt disk and the rate reaches with a negative 300 DC bias voltage up to $0.43\;{\mu}m$/min at $380^{\circ}C$ and $20{\%}\;NF_3-80\%$ Ar mixed gas gives $0.2\;{\mu}m$/min of reaction rate of cobalt oxide film.

  • PDF

반도전성 실리콘 고무의 플라즈마 표면처리에 따른 접착특성과 절연성능 (Adhesion and Electrical Performance by Plasma Treatment of Semiconductive Silicone Rubber)

  • 황선묵;이기택;홍주일;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.450-456
    • /
    • 2005
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. The modifications produced on the silicone surface by oxygen plasma were accessed using ATR-FTIR, contact angle and Surface Roughness Tester. Adhesion was obtained from T-peel tests of semiconductive layer haying different treatment durations. In addition, ac breakdown test was carried out for elucidating the change of electrical property with duration of plasma treatment. From the results, the treatment in the oxygen plasma produced a noticeable increase in surface energy, which can be mainly ascribed to the creation of O-H and C=O. It is observed that adhesion performance was determined by surface energy and roughness level of silicone surface. It is found that at dielectric strength was increased with improving the adhesion between the semiconductive and insulating interface.

Nano-mechanics 분석을 기반으로 Sol-gel PZT 박막의 Plasma에 의한 물리적 특성 변화 연구

  • 김수인;김성준;권구은;김현석;엄은상;박준성;이정현;이창우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.216.1-216.1
    • /
    • 2013
  • PZT 박막은 강유전 특성과 압전소자 특성을 나타내는 물질로 DRAM (dynamic random acess memory)과 FRAM (ferroelectric RAM) 등의 기억소자용 capacitor와 MEMS (micro electro mechanical system) 소자의 압전 물질로 사용하기 위한 연구가 진행중에 있다. 하지만 이러한 연구에서는 PZT 박막의 전기적 특성 향상을 주목적으로 연구가 진행되어 왔다. 특히, 박막 공정중 발생하는 plasma에 의한 PZT의 전기적 특성 변화가 박막 표면의 물리적 변화에 기인할 것으로 추정하고 있지만 이에 대한 구체적인 연구는 미비하다. 이 연구에서는 plasma에 의한 PZT 박막 표면의 물리적 특성 변화를 연구하기 위하여 PZT 박막을 sol-gel을 이용하여 Si 기판위에 약 100 nm의 두께로 증착하였으며, 이후 최대 300 W의 Ar plasma로 plasma power을 증가시켜 각각 10분간 plasma처리를 실시하였다. PZT 박막 표면의 nano-mechanics 특성을 분석하기 위하여 Nano-indenter와 Kelvin Probe Force Microscopy (KPFM)을 사용하여 surface hardness, surface morphology를 확인하였고 특히, surface potential 분석을 통하여 PZT 박막 표면의 plasma에 의한 박막 극 표면의 전기적 특성 변화를 연구하였다. 이 연구로 plasma에 의한 PZT 박막은 표면으로부터 최대 43 nm 깊이에서의 hardness는 최대 5.1 GPa에서 최소 4.3 GPa의 분포로 plasma power 변화에 의한 특성은 측정 불가능하였다. 이는 plasma에 의한 영향이 시료 극 표면에 국한되어 나타나기 때문으로 추정되며 이를 보완하기 위하여 surface potential을 분석하였다. 결과에 의하면 plasma power가 0 W에서 300 W로 증가함에 따라 potential이 30 mV에서 -20 mV로 감소하였으나 potential의 분산은 100 W에서 최대인 17 mV로 측정되었으며, 이때 RMS roughness역시 가장 높은 20.145 nm로 측정되었다. 특히, 100 W에서 potential에서는 물결 모양과 같은 일정한 패턴의 potential 무늬가 확인되었다.

  • PDF

Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment

  • Lee, Younmi;Lee, Young Yoon;Kim, Young Soo;Balaraju, Kotnala;Mok, Young Sun;Yoo, Suk Jae;Jeon, Yongho
    • Journal of Ginseng Research
    • /
    • 제45권4호
    • /
    • pp.519-526
    • /
    • 2021
  • Background: This study aimed to investigate the effect of cold plasma treatment on the improvement of seed germination and surface sterilization of ginseng seeds. Methods: Dehisced ginseng (Panax ginseng) seeds were exposed to dielectric barrier discharge (DBD) plasma operated in argon (Ar) or an argon/oxygen mixture (Ar/O2), and the resulting germination and surface sterilization were compared with those of an untreated control group. Bacterial and fungal detection assays were performed for plasma-treated ginseng seeds after serial dilution of surface-washed suspensions. The microbial colonies (fungi and bacteria) were classified according to their phenotypical morphologies and identified by molecular analysis. Furthermore, the effect of cold plasma treatment on the in vitro antifungal activity and suppression of Cylindrocarpon destructans in 4-year-old ginseng root discs was investigated. Results: Seeds treated with plasma in Ar or Ar/O2 exhibited a higher germination rate (%) compared with the untreated controls. Furthermore, the plasma treatment exhibited bactericidal and fungicidal effects on the seed surface, and the latter effect was stronger than the former. In addition, plasma treatment exhibited in vitro antifungal activity against C. destructans and reduced the disease severity (%) of root rot in 4-year-old ginseng root discs. The results demonstrate the stimulatory effect of plasma treatment on seed germination, surface sterilization, and root rot disease suppression in ginseng. Conclusion: The results of this study indicate that the cold plasma treatment can suppress the microbial community on the seed surface root rot in ginseng.

Plasma nitriding on chromium electrodeposit

  • Wang Liang;K.S. Nam;Kim, D.;Kim, M.;S.C. Kwon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.29-30
    • /
    • 2001
  • This paper presents some results of plasma nitriding on hard chromium deposit. The substrates were C45 steel and $30~50{\;}\mu\textrm{m}$ of chromium deposit by electroplating was formed. Plasma nitriding was carried out in a plasma nitriding system with $95NH_3{\;}+{\;}SCH_4$ atmosphere at the pressure about 600 Pa and different temperature from $450^{\circ}C{\;}to{\;}720^{\circ}C$ for various time. Optical microscopy and X-ray diffraction were used to evaluate the characteristics of surface nitride layer formed by nitrogen diffusion from plasma atmosphere inward iCr coating and interface carbide layer formed by carbon diffusion from substrate outward Cr coating. The microhardness was measured using microhareness tester at the load of 100 gf. Corrosion resistance was evaluated using the potentiodynamic measurement in 3.5% NaG solution. A saturated calomel electrode (SiCE) was used as the reference electrode. Fig.1 shows the typical microstructures of top surface and cross-section for nitrided and unnitrided samples. Aaer plasma nitriding a sandwich structure was formed consisting of surface nitride layer, center chromium layer and interface carbide layer. The thickness of nitride and carbide layers was increased with the increase of processing temperature and time. Hardness reached about 1000Hv after nitriding while 900Hv for unnitrided hard chromium deposit. X-ray diffraction indicated that surface nitrided layer was a mixture of $Cr_2N$ and CrN at low temperature and erN at high temperature (Fig.2). Anodic polarization curves showed that plasma nitriding can greatly improve the corrosion resistance of chromium e1ectrodeposit. After plasma nitriding, the corrosion potential moved to noble direction and passive current density was lower by 1 to 4 orders of magnitude compared with chromium deposit(Fig.3).

  • PDF

Damage-Free Treatment of ITO Films using Nitrogen-Oxygen (N2-O2) Molecular DC Plasma

  • Kim, Hong Tak;Nguyen, Thao Phoung Ngoc;Park, Chinho
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.112-115
    • /
    • 2015
  • In this study, the surface of ITO films was modified using $N_2-O_2$ molecular plasma, and the effects of oxygen concentration in the plasma on the ITO surface properties were investigated. Upon plasma treatment of ITO films, the surface roughness of ITO films seldom changed up to the oxygen concentration in the range of 0% to 40%, while the roughness of the films slightly changed at or above the oxygen concentration of 60%. The contact angle of water droplet on ITO films dramatically changed with varying oxygen concentration in the plasma, and the minimum value was found to be at the oxygen concentration of 20%. The plasma resistance at this condition exhibited a maximum value, and the change of resistance showed an inverse relationship compared to that of contact angle. From these results, it was conjectured that the chemical reactions in the sheath of the molecular plasma dominated more than the physical actions due to energetic ion bombardment, and also the plasma resistance could be used as an indirect indicator to qualitatively diagnosis the state of plasma during the plasma treatment.

Surface Modification with Atmospheric Microwave Agron Plasma Jet Assisted with Admixture of H2O2 and Analysis of Plasma Characteristics

  • Won, I.H.;Shin, H.K.;Kwon, H.C.;Kim, H.Y.;Kang, S.K.;Lee, J.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.544-545
    • /
    • 2013
  • Recently, low-temperature atmospheric-pressure plasmas have been investigated [1,2] for biomedical applications and surface treatments. Experiments for improving hydrophilicity of stainless steel (SUS 304) plate with atmospheric microwave argon and H2O2 mixture plasma jet [3] were carried out and experimental measurements and plasma simulations were conducted for investigating the characteristics of plasma for the process. After 30 s of low power (under 10 W) and low temperature (under $50^{\circ}C$) plasma treatment, the water contact angle decreased rapidly to around $10^{\circ}$ from $75^{\circ}$ and was maintained under $30^{\circ}$ for a day (24 hours). The surface free energy, calculated from the contact angles, increased. The chemical properties of the surface were examined by X-ray Photoelectron Spectroscopy (XPS) and the surface morphology and roughness were examined by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. The characteristics of plasma sources with several frequencies were investigated by Optical Emission Spectroscopy (OES) measurement and one-dimensional Particle-in-Cell (PIC) simulation and zero-dimensional global simulation [4]. The relation between plasma components and the efficacy of the surface modification were discussed.

  • PDF

복합레진 인레이의 표면처리방법에 따른 표면특성 비교 (Comparison of surface characterization according to surface treatment of composite resin inlay)

  • 이명진;최유리;강민경
    • 한국치위생학회지
    • /
    • 제19권2호
    • /
    • pp.307-315
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the characterization of composite resin inlay surface with silane and non-thermal atmospheric pressure plasma treatment. Methods: Composite resin inlay was used as a specimen, which was treated by sandblasting + silane and sandblasting + plasma. The untreated specimens were assigned to the control group. Specimens were analyzed for surface roughness, color change, and chemical composition. Statistical analyses were performed using one-way ANOVA test (p<0.05). Results: The present findings showed that the roughness and color changes of the plasma-treated surface were significantly lower than those of the silane-treated surface. In addition, a change in the chemical composition was observed on the plasma-treated surface. Conclusions: Based on the results, non-thermal atmospheric pressure plasma could be a potential tool for the cementation of composite resin inlay.

수치모델과 고속 CCD 카메라를 이용한 세변기 표면 처리 효과 특성 해석 (Surface Treatment Effect on the Toilet by Numerical Modeling and High Speed CCD Camera)

  • 노지현;도우리;양원균;주정훈
    • 한국표면공학회지
    • /
    • 제44권1호
    • /
    • pp.32-37
    • /
    • 2011
  • Numerical analysis is done to investigate the effect of surface treatment of a toilet on the cleanness. The surface treatment using plasma for the super-hydrophobic surface expects the self-cleaning effect of the toilet seat cover for preventing the droplets with a great quantity of bacteria during the toilet flushing after evacuation. In this study, the fluid analysis in the toilet during the flushing was performed by an ultrahigh-speed CCD camera with 1,000 frame/sec and the numerical modeling. And the spattering phenomenon from the toilet surface during urine was analyzed quantitatively by CFD-ACE+ with a free surface model and a mixed model of two fluids. If the surface tension of the toilet surface is weak, many urine droplets after collision bounded in spite of considering the gravity. The turbulence generated by the change of angle and velocity of urine and the variation of the collision phenomenon from toilet surface were modeled numerically.