• Title/Summary/Keyword: Plasma source.

Search Result 1,066, Processing Time 0.03 seconds

A Operation characteristics of the HB inverter for Remote Plasma Source (리모트 프라즈마 전원용 하프 브리지 인버터의 운전 특성)

  • Kim S.S.;Won C.Y.;Choi D.K.;Choi S.D.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.611-615
    • /
    • 2003
  • In this paper, a operation characteristics and analysis of the HB(half bridge) inverter for remote plasma system are studied. the remote plasma system is cleaning system for the chemical vapor deposition (CVD) chamber in semiconductor processing. The remote plasma system is powered by the RF generator The main power stage of the RF generator is used for the HB PWM inverter with an low pass filter in the secondary circuit of the transformer. The detailed mode analysis of HB invertor was described. The operation characteristics of Remote Plasma Source are verified by simulation and experimental results.

  • PDF

A Fundamental Study for a Photocatalytic Reactor Design (광촉매 반응치 설계를 위한 기초 연구)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • Because UV wavelength lights can activate photocatalysts, plasma is used as a light source of a photocatalytic reactor. Even though plasma has good intensity for photo reaction, substrate of catalyst coating was limited by the geometry of plasma generator. Usually bead type substrate was used for a pack bed type reactor. Honeycomb monolith type substrate was used with UV lamps instead plasma, due to the light penetration the honeycomb monolith length was too short to show good activity In this study a photocatalytic reactor, which is using a honeycomb monolith substrate, was investigated with plasma as an activation light source. As a parametric study the effects of 1311owing factors on plasma generation and power consumption are examined; supply voltage, substrate length, environment condition, catalyst loading and ratio. Using the test results, the practicability test was done with simulated synthetic gases representing bad smells and automotive exhaust gases.

Simulation of a Langmuir Probe in an ECR Reactor (ECR Reactor 내의 Langmuir Probe 시뮬레이션)

  • Kim, Hoon;Porteous, Robert K.;Boswell, Rod W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1609-1611
    • /
    • 1994
  • In ECR and helicon reactors for plasma processing, a high density plasma is generated in a source region which is connected to a diffusion region where the processing takes place. Large density and potential gradients can develop at the orifice of the source which drive ion currents into the diffusion region. The average ion velocity may become the order of the sound velocity. Measurements of the ion saturation current to a Langmuir probe are used as a standard method of determining the plasma density in laboratory discharges. However, the analysis becomes difficult in a steaming plasma. We have used the HAMLET plasma simulator to simulate the ion flow to a large langmuir probe in an ECR plasma. The collection surface was aligned with the Held upstream, normal to the field, and downstream. ion trajectories through the electric and magnetic fields were calculated including ion-neutral collisions. We examines the ratio of ion current density to plasma density as a function of magnetic field and pressure.

  • PDF

Comparison between Two 450 mm Multi-Electrode Models

  • Park, Gi-Jeong;Lee, Yun-Seong;Yu, Dae-Ho;Lee, Jin-Won;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.490-490
    • /
    • 2013
  • In semiconductor industry, it is expected that plasma process which use 450 mm source will be used at next generation. However, main obstacle of the large area plasma source is plasma uniformity from it. When electrode is enlarged, field difference between center area and side area reduces the plasma uniformity [1-3]. Therefore we investigate multi-electrode which diminish this field difference.We designed two multi-electrode models. One has two segments and the other has five segments. Each multi-electrode model is connected with two power generator and two matchers. One generator and one matcher is connected with center electrode part. The other one generator and the other one matcher is connected with side electrode part. The ion density is measured at 29 points by using floating harmonic method [4-6]. After measuring the data of each multi-electrode model, we discuss the difference of profile between two models' data.

  • PDF

Formation of Dielectric Carbon Nitride Thin Films using a Pulsed Laser Ablation Combined with High Voltage Discharge Plasma (펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.641-646
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) substrate using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in the presence of a N$_2$ reactive gas. We calculated dielectric constant, $\varepsilon$$\_$s/, with a capacitance Schering bridge method. We investigated the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were increased drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and C=N bonds. The carbon nitride thin films were observed crystalline phase confirmed by x-ray diffraction data.

Electrical Properties of Plasma According to Gas Pressure and RF Power of Xe-Inductively Coupled Plasma (유도결합형 제논의 가스압력 및 RF전력에 따른 플라즈마의 전기적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.43-47
    • /
    • 2006
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma (ICP). As results at several dependences of 20~100mTorr Xenon pressure, the brightness of discharge tube was higher (4,900 $cd/m^2$) than other conditions when Xe pressure was 20mTorr and RF power was 200W. In that case, the electron temperature and density were 3.58eV and $3.56{\times}10^{12}cm^2$, respectively. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

A Study on Feasibility of the Phosphoric Paste Doping for Solar Cell using Newly Atmospheric Pressure Plasma Source (새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인(P) 페이스트 도핑에 관한 연구)

  • Cho, I-Hyun;Yun, Myoung-Soo;Jo, Tae-Hoon;Rho, Junh-Young;Jeon, BuII;Kim, In-Tae;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • Furnace and laser is currently the most important doping process. However furnace is typically difficult appling for selective emitters. Laser requires an expensive equipment and induces a structural damage due to high temperature using laser. This study has developed a new atmospheric pressure plasma source and research atmospheric pressure plasma doping. Atmospheric pressure plasma source injected Ar gas is applied a low frequency (a few 10 kHz) and discharged the plasma. We used P type silicon wafers of solar cell. We set the doping parameter that plasma treatment time was 6s and 30s, and the current of making the plasma is 70 mA and 120 mA. As result of experiment, prolonged plasma process time and highly plasma current occur deeper doping depth and improve sheet resistance. We investigated doping profile of phosphorus paste by SIMS (Secondary Ion Mass Spectroscopy) and obtained the sheet resistance using generally formula. Additionally, grasped the wafer surface image with SEM (Scanning Electron Microscopy) to investigate surface damage of doped wafer. Therefore we confirm the possibility making the selective emitter of solar cell applied atmospheric pressure plasma doping with phosphorus paste.

Influence of Deposition Parameters on Film Hardness for Newly Synthesized BON Thin Film by Low Frequency R.F. PEMOCVD

  • G.C. Chen;J.-H. Boo;Kim, Y.J.;J.G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.73-73
    • /
    • 2001
  • Boron-containing materials have several excellent properties, such as superlnardness, insulation and non-Rinear optical property. Recently, oxynitride compounds, such as Si(ON), Ti(ON), became the promising materials applied in diffusion barrier layer and solar cell. With the expectation of obtaining the hybrid property, we have firstly grown the BON thin film by radio frequency (R.F.) plasma enhanced metalorganic chemical vapm deposition (PEMOCVD) with 100 kHz frequency and trimethyl borate precursor. The plasma source gases used in this study were Ar and $H_2$, and two kinds of nhmgen source gases, $N_2$ and <$NH_3$, were also employed. The as-grown films were characterized by XPS, IR, SEM and Knoop microlhardness tester. The relationship between the films hardness and the growth rate indicated that the hardness of the film was dependent on several factors such as nitrogen source gas, substrate temperature and film thickness due to the variation of the composition and the structure of the film. Both nitrogen and carbon content could raise the film hardness, on which nitrogen content did stronger effect than carbon. The smooth morphology and continuous structure was benefit of obtaining high hardness. The maximum hardness of BON film was about 10 GPa.

  • PDF

Plasma Density Measurement of Linear Atmospheric Pressure DBD Source Using Impedance Variation Method (임피던스 변화를 이용한 선형 대기압 DBD 플라즈마 밀도 측정)

  • Shin, Gi Won;Lee, Hwan Hee;Kwon, Hee Tae;Kim, Woo Jae;Seo, Young Chul;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • The development speed of semiconductor and display device manufacturing technology is growing faster than the development speed of process equipment. So, there is a growing need for process diagnostic technology that can measure process conditions in real time and directly. In this study, a plasma diagnosis was carried out using impedance variation due to the plasma discharge. Variation of the measurement impedance appears as a voltage change at the reference impedance, and the plasma density is calculated using this. The above experiment was conducted by integrating the plasma diagnosis system and the linear atmospheric pressure DBD plasma source. It was confirmed that plasma density varies depending on various parameters (gas flow rate, $Ar/O_2$ mixture ratio, Input power).

A Large Area Plasma Source Using Multi-cathode Electron Beam (다중 음극 전자빔을 이용한 대면적 플라즈마 소스)

  • Gang, Yang-Beom;Jeon, Hyeong-Tak;Kim, Tae-Yeong;Jeong, Gi-Hyeong;Go, Dong-Gyun;Jeong, Jae-Guk;No, Seung-Jeong
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.861-864
    • /
    • 1999
  • A new plasma source using the multi-cathode electron beam has been designed and manufactured. A multi-cathode was adopted to produce bulk plasmas in a large volume. Multi-cathode electron beam plasma source(MCEBPS) was found to generate stable plasmas over the wafer diameter of 300 mm or above. W(tungsten) filament was used as a cathode. Over a 320 mm diameter, both the plasma potential $V_p$ and floating potential $V_f$ were uniformly maintained and the difference between $V_p and V_f$ was measured to be small. The plasma density was around $10^{10} cm^{-3}$ and its variation along the radial distance was small.

  • PDF