• 제목/요약/키워드: Plasma resistance

검색결과 911건 처리시간 0.025초

플라즈마중합법에 의한 폴리스티렌의 분자구조 제에 및 레지스트 특성 조사 (Resist characteristics and molecular structure control of polystyrene by plasma polymerization method)

  • 박종관;김영봉;김보열;임응춘;이덕출
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.438-443
    • /
    • 1996
  • The effect of plasma polymerization conditions on the structure of the plasma polymerized styrene were investigated by using Fourier Transform Infrared Ray(FT-IR), Differential Scanning Calorimetry (DSC), Gel Permeation Chromatography(GPC). Plasma polymerized thin film was prepared using an interelectrode inductively coupled gas-flow-type reactor. We show that polymerization parameters of thin film affect sensitivity and etching resistance of plasma polymerized styrene is 1.41~3.93, and deposition rate of that are 32~383[.angs./min] with discharge power. Swelling and etching resistance becomes more improved with increasing discharge power during plasma polymerization. (author). 11 refs., 10 figs., 1 tab.

  • PDF

플라즈마중합 스티렌 박막의 e-beam 레지스트 특성에 관한 연구 (A study on the E-beam resist characteristics of plasma polymerized styrene)

  • 이덕출;박종관
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권5호
    • /
    • pp.425-429
    • /
    • 1994
  • In this paper, we study on the plasma polymerized styrene as a negative electron-beam resist. Plasma polymerized thin film was prepared using an interelectrode inductively coupled gas-flow type reactor. We show that polymerization parameters of thin film affect sensitivity and etching resistance of the resist. Molecular weight distribution of plasma polymerized styrene is 1.41-3.93, and deposition rates of that are 32-383[.angs./min] with discharge power. Swelling and etching resistance becomes . more improved with increasing discharge power during plasma polymerization. Etch rate by RIE is higher than that by plasma etching.

  • PDF

스테인스강의 표면특성에 미치는 플라즈마질화의 영향 (Effects of Plasma Nitriding on the Surface Charcteristice Of Stainless Steels)

  • 최한철;김관휴
    • 한국표면공학회지
    • /
    • 제30권2호
    • /
    • pp.144-154
    • /
    • 1997
  • Effects of plasma nitriding on the surface charcteristice of stainless steel(SS) were investjgated by utilizing wear tester, micro-hardness tester and potentiostat. The surface and corrosion morphology of plasma nitrided SS were analyzed by utilizing optical microscopy, SEM, XRD and WDX. It was found that plasma nitriding at $550^{\circ}C$, compared with $380^{\circ}C$, prodiced a good wear resistance and hardness as nitriding time increased, whereas Mo addition showd that were resistance and hardness decreased. Intergranular corrosion(IGC) resistance improved significantly in the case of plasma nirtrided SS containing 4.05wt% Mo at $380^{\circ}C$ because that nitrogen and Mo ast syner gidically to form a protective layer on surface which is responsible for the aggresive SCN-ion. Plasma nitrided at $550^{\circ}C$ decreased IGC as Mo content increased. Pitting improved in the plasma nitirided SS at Mo content incresased owing to retard a nucleation and growth of chromium carbide or nitirde in grain boundary.

  • PDF

Effects of Plasma Treatment on Contact Resistance and Sheet Resistance of Graphene FET

  • Ra, Chang-Ho;Choi, Min Sup;Lee, Daeyeong;Yoo, Won Jong
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.152-158
    • /
    • 2016
  • We investigated the effect of capacitively coupled Ar plasma treatment on contact resistance ($R_c$) and channel sheet resistance ($R_{sh}$) of graphene field effect transistors (FETs), by varying their channel length in the wide range from 200 nm to $50{\mu}m$ which formed the transfer length method (TLM) patterns. When the Ar plasma treatment was performed on the long channel ($10{\sim}50{\mu}m$) graphene FETs for 20 s, $R_c$ decreased from 2.4 to $1.15k{\Omega}{\cdot}{\mu}m$. It is understood that this improvement in $R_c$ is attributed to the formation of $sp^3$ bonds and dangling bonds by the plasma. However, when the channel length of the FETs decreased down to 200 nm, the drain current ($I_d$) decreased upon the plasma treatment because of the significant increase of channel $R_{sh}$ which was attributed to the atomic structural disorder induced by the plasma across the transfer length at the edge of the channel region. This study suggests a practical guideline to reduce $R_c$ using various plasma treatments for the $R_c$ sensitive graphene and other 2D material devices, where $R_c$ is traded off with $R_{sh}$.

Damage-Free Treatment of ITO Films using Nitrogen-Oxygen (N2-O2) Molecular DC Plasma

  • Kim, Hong Tak;Nguyen, Thao Phoung Ngoc;Park, Chinho
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.112-115
    • /
    • 2015
  • In this study, the surface of ITO films was modified using $N_2-O_2$ molecular plasma, and the effects of oxygen concentration in the plasma on the ITO surface properties were investigated. Upon plasma treatment of ITO films, the surface roughness of ITO films seldom changed up to the oxygen concentration in the range of 0% to 40%, while the roughness of the films slightly changed at or above the oxygen concentration of 60%. The contact angle of water droplet on ITO films dramatically changed with varying oxygen concentration in the plasma, and the minimum value was found to be at the oxygen concentration of 20%. The plasma resistance at this condition exhibited a maximum value, and the change of resistance showed an inverse relationship compared to that of contact angle. From these results, it was conjectured that the chemical reactions in the sheath of the molecular plasma dominated more than the physical actions due to energetic ion bombardment, and also the plasma resistance could be used as an indirect indicator to qualitatively diagnosis the state of plasma during the plasma treatment.

주조 스테인리스강의 해양환경 하에서 플라즈마 이온질화 공정온도에 따른 부식특성 연구 (Corrosion Characteristics of Cast Stainless Steel under Plasma Ion Nitriding Process Temperature in Marine Environment)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.504-509
    • /
    • 2017
  • In order to improve corrosion resistance for cast stainless steel in seawater, the characteristics of corrosion resistance after plasma ion nitriding was investigated. Plasma ion nitriding process was conducted in a mixture of nitrogen of 25% and hydrogen of 75% at substrate temperature ranging from 350 to $500^{\circ}C$ for 10 hours using pulsed-DC glow discharge plasma with working pressure of 250 Pa in vacuum condition. Corrosion tests were carried out for as-received and plasma ion nitrided specimens. The corrosion characteristics were investigated by measurement of weight loss and observation of surface morphology. In anodic polarization experiment, relatively less damage depth and weight loss were presented at a nitrided temperature of $400^{\circ}C$, attributing to the formation of S-phase.

YAG 상함량에 따른 YAS (Y2O3-Al2O3-SiO2)계 코팅층의 내플라즈마 특성 (Plasma Resistance of YAS (Y2O3-Al2O3-SiO2) Coating Layer with YAG Phase Contents)

  • 박의근;이현권
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.621-626
    • /
    • 2020
  • This study is aimed at preparing and evaluating the plasma resistance of YAS (Y2O3-Al2O3-SiO2) coating layer with crystalline YAG phase contents. For this purpose, YAS frits with controlled phase contents are prepared and melt-coated on sintered Al2O3 ceramics. Then, the results of phase analysis of crystalline YAS coating layer are compared to that of YAS frits, and discussed with regard to the plasma resistance of the YAS coating layer. The phase contents of the YAS frit change in a manner different from that of the prepared YAS coating layer, presumably owing to the composition change of YAS frit during the melt-coating process. The plasma resistance of the YAS coating layer is shown to increase with the YAG phase contents in the coating layer. Comparing the weight loss of YAS coating layer with those of commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the prepared YAS coating layer is 8 times higher than that of quartz and 3 times higher than that of Al2O3; this layer shows 70 % of the resistance of Y2O3.

플라즈마 질화처리한 GCD40의 기계적성질 및 내식성에 관한 연구 (A Study on the Mechanical Properties and Corrosion Resistance of GCD40 by Plasma Nitriding)

  • 김무길;정병호;김상수
    • 동력기계공학회지
    • /
    • 제6권1호
    • /
    • pp.74-81
    • /
    • 2002
  • The characteristics of corrosion resistance for the surface of ductile cast iron(GCD40) by plasma nitriding process have been studied in terms of electrochemical polarization behaviors including corrosion potential($E_{corr}$), anodic polarization trends, polarization resistance($R_p$), and also have been studied microstructures, hardness and specific wear of nitrided layer Nitrided layer showed an enhanced hardness values in all the plasma nitriding condition investigated. In the result of wear test, specific wear of nitrided specimens were much decreased than that of non-treated specimens. In the results of XRD, ${\gamma}'phase\;and\;{\varepsilon}$ phase were detected in nitrided surface. And it was found that ${\varepsilon}$ phase was decreased and ${\gamma}'phase$ was increased respectively, as the nitriding time became longer. In the test of corrosion resistance, natural potentials in all the nitrided specimens were towards noble directions than in the case of non-treated specimens. The measurement of electrode potentials revealed that corrosion resistivity of plasma nitrided specimens were higher than in the case of the non-treated specimens.

  • PDF

AISI304L 스테인리스강의 저온 플라즈마 침탄처리 후 질화처리 시 Ar 가스가 표면 경화층에 미치는 영향 (The Influence of Ar Gas in the Nitriding of Low Temperature Plasma Carburized AISI304L Stainless Steel.)

  • 정광호;이인섭
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.125-130
    • /
    • 2008
  • Conventional plasma carburizing or nitriding for austenitic stainless steels results in a degradation of corrosion resistance. However, a low temperature plasma surface treatment can improve surface hardness without deteriorating the corrosion resistance. The 2-step low temperature plasma processes (the combined carburizing and post nitriding) offers the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. In the present paper, attempts have been made to investigate the influence of the introduction of Ar gas (0~20%) in nitriding atmosphere during low temperature plasma nitriding at $370^{\circ}C$ after low temperature plasma carburizing at $470^{\circ}C$. All treated specimens exhibited the increase of the surface hardness with increasing Ar level in the atmosphere and the surface hardness value reached up to 1050 HV0.1, greater than 750 $HV_{0.1}$ in the carburized state. The expanded austenite phase (${\gamma}_N$) was observed on the most of the treated surfaces. The thickness of the ${\gamma}_N$ layer reached about $7{\mu}m$ for the specimen treated in the nitriding atmosphere containing 20% Ar. In case of 10% Ar containing atmosphere, the corrosion resistance was significantly enhanced than untreated austenitic stainless steels, whilst 20% Ar level in the atmosphere caused to form CrN in the N-enriched layer (${\gamma}_N$), which led to the degradation of corrosion resistance compared with untreated austenitic stainless steels.

MgO-Al2O3-SiO2계 유리의 열물성과 내플라즈마성 연구 (Study on Thermal Properties and Plasma Resistance of MgO-Al2O3-SiO2 Glass)

  • 윤지섭;최재호;정윤성;민경원;임원빈;김형준
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.61-66
    • /
    • 2021
  • In this study, we studied the alternative of plasma resistant ceramic parts that constitute plasma chambers in the semiconductor dry etching process. MgO-Al2O3-SiO2(MAS) glass was made of 13 types of glass using the Design Of Experiments(DOE) and the effect on thermal properties such as glass transition temperature and crystallization temperature depending on the content of each composition and etching resistance to CF4/O2/Ar plasma gas. MAS glass showed excellent plasma resistance and surface roughness up to 20 times higher than quartz glass. As the content of Al2O3 and MgO increases, the plasma resistance is improved, and it has been confirmed that it has an inverse relationship with SiO2.